
LinearEquations-IML

Solving systems of linear equations with SAS/IML
The goal of this exercise is to show you how to use SAS/IML to solve systems of
linear equations. We’ll do some of the initial steps contained in one of the
SAS/IML examples on the web site.

1. Open the Psych 6140 web page, http://www.psych.yorku.ca/lab/psy6140 in a
browser window. Navigate to SAS Examples -> Matrix Algebra with SAS/IML.

2. Select imleqn.sas
3. Start SAS/IML. There is a small library of useful IML functions you can load as

follows:
ods listing;
proc iml;
 reset print log fuzz fw=5;
 %include iml(matlib);

4. The following statements define a set of 3 equations in 3 unknowns, of the form
A x = b:

A= {1 1 -4, 1 -2 1, 1 1 1};
b= {2, 1, 0};
xx = t('X1' : 'X3');
print A '*' xx '=' b;

5. The SAS/IML function r()in the matlib.sas library finds the rank of a matrix.
As we will see in the lecture, a system of equations is consistent (have a solution) if
r(A) = r(A | b). Note that ‘||’ is used to join matrices in IML.

* they are consistent, since r(A) = r(A b);
print (r(A)) (r(A || b));

6. For consistent equations, the solution is x = A-1 b, so the easy ways to find the
solution are to use the inv() function or the solve() function:

x = inv(A) * b;
x = solve(A, b);
print A ' * ' x '=' (A * x) '=' b;

7. Another method is to use the function echelon() to reduce the matrix (A | b) to
echelon form, which gives (I | A-1 b)

*-- Echelon form of (A || b) shows solution;
r = echelon(A || b);

 This method also works for inconsistent equations (where inv(A) and
solve(A,b) give error messages).

8. Using what you’ve learned so far, setup and find solution(s) to the following
equations. Try inv(), solve() and echelon().

1 2 3

1 2 3

1 2 3

4 1 3
3 6

2
4

3
5

1 2 5

x x x
x x
x x x

x
=

+
− +

+ =
+ + =

http://www.psych.yorku.ca/lab/psy6140
http://www.psych.yorku.ca/friendly/lab/files/psy6140/examples/iml/imleqn.sas

LinearEquations-IML

9. It may be useful to see how new functions are defined in SAS/IML. The r()
function for matrix rank simply reduces a matrix to echelon form and counts the
number of non-zero rows and columns, because rank = min (NZrows, NZcols).
 *-- Define a function module to find the rank of a matrix;
start r(A);
 reset noprint;
 *-- rank = number of nonzero rows/cols in echelon form;
 e = echelon(A);
 r = (e ^= 0)[,+]; *-- rows: # of non-zero elements;
 r = (r ^= 0)[+,]; *-- # non-zero rows;
 reset print;
 return (r);
finish;

Note the use of subscript operators [,+] and [+,] to sum a result (e ^= 0)
across columns or rows.

10. Here is the list of functions defined in matlib.sas:

 Accessing the modules:
 %include iml(matlib);

 All of these are functions, returning a value, so should be assigned
 to some matrix name, e.g.,
 u = proj(y, Z);
 r = r(A);

 *----- Matrix utilities -------
 row(X) - Convert a matrix into a row vector
 col(X) - Convert a matrix into a col vector
 *----- Det, Rank, Projections -----
 r(A) - Returns the rank of the matrix A.
 proj(y,X) - Returns the projection of vector y on matrix X.
 minor(A,i,j) - Returns the (i,j) minor of matrix A.
 cofactor(A,i,j) - Returns the (i,j) cofactor of matrix A.
 *----- Statistical functions ------
 len(X) - Returns the lengths of the columns of matrix X
 dev(x) - Returns matrix X in deviations from its column means.
 scp(x) - Returns sum of squares and cross-products(X`X).
 cov (x) - Compute covariance matrix of columns of X
 corr (X) - Compute correlations among columns of X
 median(D) - Median of each column of a matrix D
 *----- Elementary row operations ----
 rowadd (X, from, to, mult) - Add 'mult'*row 'from' to row 'to'
 rowswap(X, from, to) - Interchange rows 'from' and 'to' of matrix X
 rowmult(X, row, mult) - Multiply one 'row' by a constant 'mult'

	Solving systems of linear equations with SAS/IML

