
IntroR

 - 1 -

Introduction to R

This is a most brief and basic introduction to statistical computing and graphics
with R. We use the basic R application (“Rgui”) today. Starting next week, we
will use R Studio, a much more convenient and advanced R application.

1. Start R: double-click on the R icon
2. Windows: by default, R works with multiple windows contained within the

RGui window. You can work with R via copy/paste from an external editor
(Notepad, Notepad++, etc.), but here we’ll just work by typing commands into
the R Console window, after the ‘>’ prompt.

3. Reading data: Let’s start by reading in some data from a text file. The file

class.txt looks like this (first few lines). The first line specifies variable
names.
 sex age height weight
Alfred M 14 69.0 112.5
Alice F 13 56.5 84.0
Barbara F 13 65.3 98.0
Carol F 14 62.8 102.5

 ...

There are quite a few R functions for reading such data, in various formats,
and others for importing data from SAS, SPSS, excel, etc. Here we will use
read.table(). Enter the lines below to read the class.txt file and create a

IntroR

 - 2 -

‘data.frame’ called class. Note: in the R script below, # signals a comment.
You don’t have to type those lines.
read a data table from a local file (NB: always use '/' not '\')
class <- read.table("N:/psy6140/R/class.txt")
or, read the same data from a web URL ...
class <-read.table("http://euclid.psych.yorku.ca/www/psy6140/R/class.txt")
print the data
class

• Getting help: Documentation for any R function is obtained with help() or ?.
Almost all have examples at the end.

?read.table

4. Working with data: Try the following and see what they do.

'class' is a data.frame; look at it's structure
str(class)
data.frames usually have row and column names
colnames(class)
rownames(class)
print subsets
subset(class, sex=='M')
subset(class, sex=='F')

5. Creating new variables: The following lines show two different ways to

calculate body mass index from height and weight and growth rate from
height and age. Note how variables are referred to with the $ operator, as in
class$weight. With the transform() function, calculations take place
within the data.frame.

add new measures BMI; NB: '$' references a column in a data.frame
class$BMI <- 703 * class$weight / (class$height)^2
class$growth <- class$height / class$age

easier way: using transform()
class <- transform(class,
 BMI= 703 * weight / height^2,
 growth.rate = height / age
)

6. Simple summaries for any R object: Most R objects have a summary()
method

get some simple summaries

IntroR

 - 3 -

summary(class)

7. Plotting: R has an extensive collection of graphical methods. Try the

following to see what they do.

plot method for a data.frame: scatterplot matrix
plot(class)

boxplot(weight ~ sex, data=class)

plotting functions
plot(sin, -pi, 5*pi)

scatterplots
plot(weight ~ height, data=class)

8. Fitting and graphing linear models: All regression and ANOVA models can
be fit in R with a single function: lm(). The result is an lm object, which has
special print, summary, plot and other methods.

fitting linear models
mod1 <- lm(weight ~ height, data=class)
mod1
anova(mod1)
abline(mod1, col="red")
regression diagnostics (NB: produces 4 plots by default)
plot(mod1)

9. More complex models: R has a simple comprehensive syntax for

expressing linear models. In this syntax, ~ means “is modeled by,” + means
“and” and * expands to include main effects and interactions.

mod2 <- lm(weight ~ height + age + sex, data=class)
anova(mod2)

mod3 <- lm(weight ~ height*sex + age, data=class)
anova(mod3)

comparing models
anova(mod1, mod2, mod3)

10. Ending an R session: Type q() to end, or simply close the R Gui window.

