
Statistical Methods in Psychology Journals
Guidelines and Explanations

Leland Wilkinson and the Task Force on Statistical Inference
APA Board of Scientific Affairs

n the light of continuing debate over the applications of
significance testing in psychology journals and follow-
ing the publication of Cohen's (1994) article, the Board

of Scientific Affairs (BSA) of the American Psychological
Association (APA) convened a committee called the Task
Force on Statistical Inference (TFSI) whose charge was "to
elucidate some of the controversial issues surrounding ap-
plications of statistics including significance testing and its
alternatives; alternative underlying models and data trans-
formation; and newer methods made possible by powerful
computers" (BSA, personal communication, February 28,
1996). Robert Rosenthal, Robert Abelson, and Jacob Co-
hen (cochairs) met initially and agreed on the desirability of
having several types of specialists on the task force: stat-
isticians, teachers of statistics, journal editors, authors of
statistics books, computer experts, and wise elders. Nine
individuals were subsequently invited to join and all agreed.
These were Leona Aiken, Mark Appelbaum, Gwyneth Boo-
doo, David A. Kenny, Helena Kraemer, Donald Rubin, Bruce
Thompson, Howard Wainer, and Leland Wilkinson. In addi-
tion, Lee Cronbach, Paul Meehl, Frederick Mosteller and John
Tukey served as Senior Advisors to the Task Force and
commented on written materials.

The TFSI met twice in two years and corresponded
throughout that period. After the first meeting, the task
force circulated a preliminary report indicating its intention
to examine issues beyond null hypothesis significance test-
ing. The task force invited comments and used this feed-
back in the deliberations during its second meeting.

After the second meeting, the task force recommended
several possibilities for further action, chief of which
would be to revise the statistical sections of the American
Psychological Association Publication Manual (APA,
1994). After extensive discussion, the BSA recommended
that "before the TFSI undertook a revision of the APA
Publication Manual, it might want to consider publishing
an article in American Psychologist, as a way to initiate
discussion in the field about changes in current practices of
data analysis and reporting" (BSA, personal communica-
tion, November 17, 1997).

This report follows that request. The sections in italics
are proposed guidelines that the TFSI recommends could
be used for revising the APA publication manual or for
developing other BSA supporting materials. Following
each guideline are comments, explanations, or elaborations
assembled by Leland Wilkinson for the task force and
under its review. This report is concerned with the use of

statistical methods only and is not meant as an assessment
of research methods in general. Psychology is a broad
science. Methods appropriate in one area may be inappro-
priate in another.

The title and format of this report are adapted from a
similar article by Bailar and Mosteller (1988). That article
should be consulted, because it overlaps somewhat with
this one and discusses some issues relevant to research in
psychology. Further detail can also be found in the publi-
cations on this topic by several committee members (Abel-
son, 1995, 1997; Rosenthal, 1994; Thompson, 1996;
Wainer, in press; see also articles in Harlow, Mulaik, &
Steiger, 1997).

Method
Design

Make clear at the outset what type of study you are doing.
Do not cloak a study in one guise to try to give it the
assumed reputation of another. For studies that have mul-
tiple goals, be sure to define and prioritize those goals.

There are many forms of empirical studies in psychol-
ogy, including case reports, controlled experiments, quasi-
experiments, statistical simulations, surveys, observational
studies, and studies of studies (meta-analyses). Some are
hypothesis generating: They explore data to form or sharpen
hypotheses about a population for assessing future hypothe-
ses. Some are hypothesis testing: They assess specific a priori
hypotheses or estimate parameters by random sampling from
that population. Some are meta-analytic: They assess specific
a priori hypotheses or estimate parameters (or both) by syn-
thesizing the results of available studies.

Some researchers have the impression or have been
taught to believe that some of these forms yield information
that is more valuable or credible than others (see Cronbach,
1975, for a discussion). Occasionally proponents of some
research methods disparage others. In fact, each form of
research has its own strengths, weaknesses, and standards
of practice.

Jacob Cohen died on January 20, 1998. Without his initiative and gentle
persistence, this report most likely would not have appeared. Grant Blank
provided Kahn and Udry's (1986) reference. Gerard Dallal and Paul
Velleman offered helpful comments.

Correspondence concerning this report should be sent to the Task
Force on Statistical Inference, c/o Sangeeta Panicker, APA Science Di-
rectorate, 750 First Street, NE, Washington, DC 20002-4242. Electronic
mail may be sent to spanicker@apa.org.
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Population

The interpretation of the results of any study depends on
the characteristics of the population intended for analysis.
Define the population (participants, stimuli, or studies)
clearly. If control or comparison groups are part of the
design, present how they are defined.

Psychology students sometimes think that a statistical
population is the human race or, at least, college sopho-
mores. They also have some difficulty distinguishing a
class of objects versus a statistical population-that some-
times we make inferences about a population through sta-
tistical methods, and other times we make inferences about
a class through logical or other nonstatistical methods.
Populations may be sets of potential observations on peo-
ple, adjectives, or even research articles. How a population
is defined in an article affects almost every conclusion in
that article.

Sample

Describe the sampling procedures and emphasize any in-
clusion or exclusion criteria. If the sample is stratified (e.g.,
by site or gender) describe fully the method and rationale.
Note the proposed sample size for each subgroup.

Interval estimates for clustered and stratified random
samples differ from those for simple random samples.
Statistical software is now becoming available for these
purposes. If you are using a convenience sample (whose
members are not selected at random), be sure to make that
procedure clear to your readers. Using a convenience sam-
ple does not automatically disqualify a study from publi-
cation, but it harms your objectivity to try to conceal this by
implying that you used a random sample. Sometimes the
case for the representativeness of a convenience sample can
be strengthened by explicit comparison of sample charac-
teristics with those of a defined population across a wide
range of variables.

Assignment

Random assignment. For research involving
causal inferences, the assignment of units to levels of the
causal variable is critical. Random assignment (not to be
confused with random selection) allows for the strongest
possible causal inferences free of extraneous assumptions.
If random assignment is planned, provide enough informa-
tion to show that the process for making the actual assign-
ments is random.

There is a strong research tradition and many exem-
plars for random assignment in various fields of psychol-
ogy. Even those who have elucidated quasi-experimental
designs in psychological research (e.g., Cook & Campbell,
1979) have repeatedly emphasized the superiority of ran-
dom assignment as a method for controlling bias and lurk-
ing variables. "Random" does not mean "haphazard." Ran-
domization is a fragile condition, easily corrupted deliber-
ately, as we see when a skilled magician flips a fair coin
repeatedly to heads, or innocently, as we saw when the
drum was not turned sufficiently to randomize the picks in
the Vietnam draft lottery. As psychologists, we also know

that human participants are incapable of producing a ran-
dom process (digits, spatial arrangements, etc.) or of rec-
ognizing one. It is best not to trust the random behavior of
a physical device unless you are an expert in these matters.
It is safer to use the pseudorandom sequence from a well-
designed computer generator or from published tables of
random numbers. The added benefit of such a procedure is
that you can supply a random number seed or starting
number in a table that other researchers can use to check
your methods later.

Nonrandom assignment. For some research
questions, random assignment is not feasible. In such
cases, we need to minimize effects of variables that affect
the observed relationship between a causal variable and an
outcome. Such variables are commonly called confounds
or covariates. The researcher needs to attempt to deter-
mine the relevant covariates, measure them adequately,
and adjust for their effects either by design or by analysis.
If the effects of covariates are adjusted by analysis, the
strong assumptions that are made must be explicitly stated
and, to the extent possible, tested and justified. Describe
methods used to attenuate sources of bias, including plans
for minimizing dropouts, noncompliance, and missing data.

Authors have used the term "control group" to de-
scribe, among other things, (a) a comparison group, (b)
members of pairs matched or blocked on one or more
nuisance variables, (c) a group not receiving a particular
treatment, (d) a statistical sample whose values are adjusted
post hoc by the use of one or more covariates, or (e) a
group for which the experimenter acknowledges bias exists
and perhaps hopes that this admission will allow the reader
to make appropriate discounts or other mental adjustments.
None of these is an instance of a fully adequate control
group.

If we can neither implement randomization nor ap-
proach total control of variables that modify effects (out-
comes), then we should use the term "control group" cau-
tiously. In most of these cases, it would be better to forgo
the term and use "contrast group" instead. In any case, we
should describe exactly which confounding variables have
been explicitly controlled and speculate about which un-
measured ones could lead to incorrect inferences. In the
absence of randomization, we should do our best to inves-
tigate sensitivity to various untestable assumptions.

Measurement

Variables. Explicitly define the variables in the
study, show how they are related to the goals of the study,
and explain how they are measured. The units of measure-
ment of all variables, causal and outcome, should fit the
language you use in the introduction and discussion sec-
tions of your report.

A variable is a method for assigning to a set of
observations a value from a set of possible outcomes. For
example, a variable called "gender" might assign each of
50 observations to one of the values male or female. When
we define a variable, we are declaring what we are prepared
to represent as a valid observation and what we must
consider as invalid. If we define the range of a particular
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variable (the set of possible outcomes) to be from 1 to 7 on
a Likert scale, for example, then a value of 9 is not an
outlier (an unusually extreme value). It is an illegal value.
If we declare the range of a variable to be positive real
numbers and the domain to be observations of reaction time
(in milliseconds) to an administration of electric shock,
then a value of 3,000 is not illegal; it is an outlier.

Naming a variable is almost as important as measuring
it. We do well to select a name that reflects how a variable
is measured. On this basis, the name "IQ test score" is
preferable to "intelligence" and "retrospective self-report
of childhood sexual abuse" is preferable to "childhood
sexual abuse." Without such precision, ambiguity in defin-
ing variables can give a theory an unfortunate resistance to
empirical falsification. Being precise does not make us
operationalists. It simply means that we try to avoid exces-
sive generalization.

Editors and reviewers should be suspicious when they
notice authors changing definitions or names of variables,
failing to make clear what would be contrary evidence, or
using measures with no history and thus no known prop-
erties. Researchers should be suspicious when code books
and scoring systems are inscrutable or more voluminous
than the research articles on which they are based. Every-
one should worry when a system offers to code a specific
observation in two or more ways for the same variable.

Instruments. If a questionnaire is used to collect
data, summarize the psychometric properties of its scores
with specific regard to the way the instrument is used in a
population. Psychometric properties include measures of
validity, reliability, and any other qualities affecting con-
clusions. If a physical apparatus is used, provide enough
information (brand, model, design specifications) to allow
another experimenter to replicate your measurement
process.

There are many methods for constructing instruments
and psychometrically validating scores from such mea-
sures. Traditional true-score theory and item-response test
theory provide appropriate frameworks for assessing reli-
ability and internal validity. Signal detection theory and
various coefficients of association can be used to assess
external validity. Messick (1989) provides a comprehen-
sive guide to validity.

It is important to remember that a test is not reliable or
unreliable. Reliability is a property of the scores on a test
for a particular population of examinees (Feldt & Brennan,
1989). Thus, authors should provide reliability coefficients
of the scores for the data being analyzed even when the
focus of their research is not psychometric. Interpreting the
size of observed effects requires an assessment of the
reliability of the scores.

Besides showing that an instrument is reliable, we
need to show that it does not correlate strongly with other
key constructs. It is just as important to establish that a
measure does not measure what it should not measure as it
is to show that it does measure what it should.

Researchers occasionally encounter a measurement
problem that has no obvious solution. This happens when
they decide to explore a new and rapidly growing research

area that is based on a previous researcher's well-defined
construct implemented with a poorly developed psycho-
metric instrument. Innovators, in the excitement of their
discovery, sometimes give insufficient attention to the
quality of their instruments. Once a defective measure
enters the literature, subsequent researchers are reluctant to
change it. In these cases, editors and reviewers should pay
special attention to the psychometric properties of the in-
struments used, and they might want to encourage revisions
(even if not by the scale's author) to prevent the accumu-
lation of results based on relatively invalid or unreliable
measures.

Procedure. Describe any anticipated sources of
attrition due to noncompliance, dropout, death, or other
factors. Indicate how such attrition may affect the gener-
alizability of the results. Clearly describe the conditions
under which measurements are taken (e.g., format, time,
place, personnel who collected data). Describe the specific
methods used to deal with experimenter bias, especially if
you collected the data yourself

Despite the long-established findings of the effects of
experimenter bias (Rosenthal, 1966), many published stud-
ies appear to ignore or discount these problems. For exam-
ple, some authors or their assistants with knowledge of
hypotheses or study goals screen participants (through per-
sonal interviews or telephone conversations) for inclusion
in their studies. Some authors administer questionnaires.
Some authors give instructions to participants. Some au-
thors perform experimental manipulations. Some tally or
code responses. Some rate videotapes.

An author's self-awareness, experience, or resolve
does not eliminate experimenter bias. In short, there are no
valid excuses, financial or otherwise, for avoiding an op-
portunity to double-blind. Researchers looking for guid-
ance on this matter should consult the classic book of
Webb, Campbell, Schwartz, and Sechrest (1966) and an
exemplary dissertation (performed on a modest budget) by
Baker (1969).

Power and sample size. Provide information
on sample size and the process that led to sample size
decisions. Document the effect sizes, sampling and mea-
surement assumptions, as well as analytic procedures used
in power calculations. Because power computations are
most meaningful when done before data are collected and
examined, it is important to show how effect-size estimates
have been derived from previous research and theory in
order to dispel suspicions that they might have been taken
from data used in the study or, even worse, constructed to
justify a particular sample size. Once the study is analyzed,
confidence intervals replace calculated power in describ-
ing results.

Largely because of the work of Cohen (1969, 1988),
psychologists have become aware of the need to consider
power in the design of their studies, before they collect
data. The intellectual exercise required to do this stimulates
authors to take seriously prior research and theory in their
field, and it gives an opportunity, with incumbent risk, for
a few to offer the challenge that there is no applicable
research behind a given study. If exploration were not
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disguised in hypothetico-deductive language, then it might
have the opportunity to influence subsequent research
constructively.

Computer programs that calculate power for various
designs and distributions are now available. One can use
them to conduct power analyses for a range of reasonable
alpha values and effect sizes. Doing so reveals how power
changes across this range and overcomes a tendency
to regard a single power estimate as being absolutely
definitive.

Many of us encounter power issues when applying for
grants. Even when not asking for money, think about
power. Statistical power does not corrupt.

Results
Complications

Before presenting results, report complications, protocol
violations, and other unanticipated events in data collec-
tion. These include missing data, attrition, and nonre-
sponse. Discuss analytic techniques devised to ameliorate
these problems. Describe nonrepresentativeness statisti-
cally by reporting patterns and distributions of missing
data and contaminations. Document how the actual anal-
ysis differs from the analysis planned before complications
arose. The use of techniques to ensure that the reported
results are not produced by anomalies in the data (e.g.,
outliers, points of high influence, nonrandom missing data,
selection bias, attrition problems) should be a standard
component of all analyses.

As soon as you have collected your data, before you
compute any statistics, look at your data. Data screening is
not data snooping. It is not an opportunity to discard data or
change values to favor your hypotheses. However, if you
assess hypotheses without examining your data, you risk
publishing nonsense.

Computer malfunctions tend to be catastrophic: A
system crashes; a file fails to import; data are lost. Less
well-known are more subtle bugs that can be more cata-
strophic in the long run. For example, a single value in a
file may be corrupted in reading or writing (often in the first
or last record). This circumstance usually produces a major
value error, the kind of singleton that can make large
correlations change sign and small correlations become
large.

Graphical inspection of data offers an excellent pos-
sibility for detecting serious compromises to data integrity.
The reason is simple: Graphics broadcast; statistics narrow-
cast. Indeed, some international corporations that must
defend themselves against rapidly evolving fraudulent
schemes use real-time graphic displays as their first line of
defense and statistical analyses as a distant second. The
following example shows why.

Figure 1 shows a scatter-plot matrix (SPLOM) of
three variables from a national survey of approximately
3,000 counseling clients (Chartrand, 1997). This display,
consisting of pairwise scatter plots arranged in a matrix, is
found in most modern statistical packages. The diagonal
cells contain dot plots of each variable (with the dots

Figure 1
Scatter-Plot Matrix
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stacked like a histogram) and scales used for each variable.
The three variables shown are questionnaire measures of
respondent's age (AGE), gender (SEX), and number of
years together in current relationship (TOGETHER). The
graphic in Figure 1 is not intended for final presentation of
results; we use it instead to locate coding errors and other
anomalies before we analyze our data. Figure 1 is a se-
lected portion of a computer screen display that offers tools
for zooming in and out, examining points, and linking to
information in other graphical displays and data editors.
SPLOM displays can be used to recognize unusual patterns
in 20 or more variables simultaneously. We focus on these
three only.

There are several anomalies in this graphic. The AGE
histogram shows a spike at the right end, which corre-
sponds to the value 99 in the data. This coded value most
likely signifies a missing value, because it is unlikely that
this many people in a sample of 3,000 would have an age
of 99 or greater. Using numerical values for missing value
codes is a risky practice (Kahn & Udry, 1986).

The histogram for SEX shows an unremarkable divi-
sion into two values. The histogram for TOGETHER is
highly skewed, with a spike at the lower end presumably
signifying no relationship. The most remarkable pattern is
the triangular joint distribution of TOGETHER and AGE.
Triangular joint distributions often (but not necessarily)
signal an implication or a relation rather than a linear
function with error. In this case, it makes sense that the
span of a relationship should not exceed a person's age.
Closer examination shows that something is wrong here,
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however. We find some respondents (in the upper left
triangular area of the TOGETHER-AGE panel) claiming
that they have been in a significant relationship longer than
they have been alive! Had we computed statistics or fit
models before examining the raw data, we would likely
have missed these reporting errors. There is little reason to
expect that TOGETHER would show any anomalous be-
havior with other variables, and even if AGE and TO-
GETHER appeared jointly in certain models, we may not
have known anything was amiss, regardless of our care in
examining residual or other diagnostic plots.

The main point of this example is that the type of
"atheoretical" search for patterns that we are sometimes
warned against in graduate school can save us from the
humiliation of having to retract conclusions we might ul-
timately make on the basis of contaminated data. We are
warned against fishing expeditions for understandable rea-
sons, but blind application of models without screening our
data is a far graver error.

Graphics cannot solve all our problems. Special issues
arise in modeling when we have missing data. The two
popular methods for dealing with missing data that are
found in basic statistics packages-listwise and pairwise
deletion of missing values-are among the worst methods
available for practical applications. Little and Rubin (1987)
have discussed these issues in more detail and offer alter-
native approaches.

Analysis

Choosing a minimally sufficient analysis.
The enormous variety of modem quantitative methods
leaves researchers with the nontrivial task of matching
analysis and design to the research question. Although
complex designs and state-of-the-art methods are some-
times necessary to address research questions effectively,
simpler classical approaches often can provide elegant and
sufficient answers to important questions. Do not choose an
analytic method to impress your readers or to deflect
criticism. If the assumptions and strength of a simpler
method are reasonable for your data and research prob-
lem, use it. Occam's razor applies to methods as well as to
theories.

We should follow the advice of Fisher (1935):

Experimenters should remember that they and their colleagues
usually know more about the kind of material they are dealing
with than do the authors of text-books written without such
personal experience, and that a more complex, or less intelligible,
test is not likely to serve their purpose better, in any sense, than
those of proved value in their own subject. (p. 49)

There is nothing wrong with using state-of-the-art methods,
as long as you and your readers understand how they work
and what they are doing. On the other hand, don't cling to
obsolete methods (e.g., Newman-Keuls or Duncan post
hoc tests) out of fear of learning the new. In any case, listen
to Fisher. Begin with an idea. Then pick a method.

Computer programs. There are many good
computer programs for analyzing data. More important
than choosing a specific statistical package is verifying

your results, understanding what they mean, and knowing
how they are computed. If you cannot verify your results by
intelligent "guesstimates, " you should check them against
the output of another program. You will not be happy if a
vendor reports a bug after your data are in print (not an
infrequent event). Do not report statistics found on a print-
out without understanding how they are computed or what
they mean. Do not report statistics to a greater precision
than is supported by your data simply because they are
printed that way by the program. Using the computer is an
opportunity for you to control your analysis and design. If
a computer program does not provide the analysis you
need, use another program rather than let the computer
shape your thinking.

There is no substitute for common sense. If you can-
not use rules of thumb to detect whether the result of a
computation makes sense to you, then you should ask
yourself whether the procedure you are using is appropriate
for your research. Graphics can help you to make some of
these determinations; theory can help in other cases. But
never assume that using a highly regarded program ab-
solves you of the responsibility for judging whether your
results are plausible. Finally, when documenting the use of
a statistical procedure, refer to the statistical literature
rather than a computer manual; when documenting the use
of a program, refer to the computer manual rather than the
statistical literature.

Assumptions. You should take efforts to assure
that the underlying assumptions required for the analysis
are reasonable given the data. Examine residuals carefully.
Do not use distributional tests and statistical indexes of
shape (e.g., skewness, kurtosis) as a substitute for examin-
ing your residuals 'graphically.

Using a statistical test to diagnose problems in model
fitting has several shortcomings. First, diagnostic signifi-
cance tests based on summary statistics (such as tests for
homogeneity of variance) are often impractically sensitive;
our statistical tests of models are often more robust than our
statistical tests of assumptions. Second, statistics such as
skewness and kurtosis often fail to detect distributional
irregularities in the residuals. Third, statistical tests depend
on sample size, and as sample size increases, the tests often
will reject innocuous assumptions. In general, there is no
substitute for graphical analysis of assumptions.

Modem statistical packages offer graphical diagnos-
tics for helping to determine whether a model appears to fit
data appropriately. Most users are familiar with residual
plots for linear regression modeling. Fewer are aware that
John Tukey's paradigmatic equation, data = fit + residual,
applies to a more general class of models and has broad
implications for graphical analysis of assumptions. Stem-
and-leaf plots, box plots, histograms, dot plots, spread/level
plots, probability plots, spectral plots, autocorrelation and
cross-correlation plots, co-plots, and trellises (Chambers,
Cleveland, Kleiner, & Tukey, 1983; Cleveland, 1995;
Tukey, 1977) all serve at various times for displaying
residuals, whether they arise from analysis of variance
(ANOVA), nonlinear modeling, factor analysis, latent vari-
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able modeling, multidimensional scaling, hierarchical lin-
ear modeling, or other procedures.

Hypothesis tests. It is hard to imagine a situa-
tion in which a dichotomous accept-reject decision is bet-
ter than reporting an actual p value or, better still, a
confidence interval. Never use the unfortunate expression
"accept the null hypothesis. " Always provide some effect-
size estimate when reporting a p value. Cohen (1994) has
written on this subject in this journal. All psychologists
would benefit from reading his insightful article.

Effect sizes. Always present effect sizes for pri-
mary outcomes. If the units of measurement are meaningful
on a practical level (e.g., number of cigarettes smoked per
day), then we usually prefer an unstandardized measure
(regression coefficient or mean difference) to a standard-
ized measure (r or d). It helps to add brief comments that
place these effect sizes in a practical and theoretical
context.

APA's (1994) publication manual included an impor-
tant new "encouragement" (p. 18) to report effect sizes.
Unfortunately, empirical studies of various journals indi-
cate that the effect size of this encouragement has been
negligible (Keselman et al., 1998; Kirk, 1996; Thompson
& Snyder, 1998). We must stress again that reporting and
interpreting effect sizes in the context of previously re-
ported effects is essential to good research. It enables
readers to evaluate the stability of results across samples,
designs, and analyses. Reporting effect sizes also informs
power analyses and meta-analyses needed in future
research.

Fleiss (1994), Kirk (1996), Rosenthal (1994), and
Snyder and Lawson (1993) have summarized various mea-
sures of effect sizes used in psychological research. Con-
sult these articles for information on computing them. For
a simple, general purpose display of the practical meaning
of an effect size, see Rosenthal and Rubin (1982). Consult
Rosenthal and Rubin (1994) for information on the use of
"counternull intervals" for effect sizes, as alternatives to
confidence intervals.

Interval estimates. Interval estimates should be
given for any effect sizes involving principal outcomes.
Provide intervals for correlations and other coefficients of
association or variation whenever possible.

Confidence intervals are usually available in statistical
software; otherwise, confidence intervals for basic statistics
can be computed from typical output. Comparing confi-
dence intervals from a current study to intervals from
previous, related studies helps focus attention on stability
across studies (Schmidt, 1996). Collecting intervals across
studies also helps in constructing plausible regions for
population parameters. This practice should help prevent
the common mistake of assuming a parameter is contained
in a confidence interval.

Multiplicities. Multiple outcomes require special
handling. There are many ways to conduct reasonable
inference when faced with multiplicity (e.g., Bonferroni
correction ofp values, multivariate test statistics, empirical
Bayes methods). It is your responsibility to define and
justify the methods used.

Statisticians speak of the curse of dimensionality.
To paraphrase, multiplicities are the curse of the social
sciences. In many areas of psychology, we cannot do
research on important problems without encountering
multiplicity. We often encounter many variables and
many relationships.

One of the most prevalent strategies psychologists use
to handle multiplicity is to follow an ANOVA with pair-
wise multiple-comparison tests. This approach is usually
wrong for several reasons. First, pairwise methods such as
Tukey's honestly significant difference procedure were de-
signed to control a familywise error rate based on the
sample size and number of comparisons. Preceding them
with an omnibus F test in a stagewise testing procedure
defeats this design, making it unnecessarily conservative.
Second, researchers rarely need to compare all possible
means to understand their results or assess their theory; by
setting their sights large, they sacrifice their power to see
small. Third, the lattice of all possible pairs is a straight-
jacket; forcing themselves to wear it often restricts re-
searchers to uninteresting hypotheses and induces them to
ignore more fruitful ones.

As an antidote to the temptation to explore all pairs,
imagine yourself restricted to mentioning only pairwise
comparisons in the introduction and discussion sections of
your article. Higher order concepts such as trends, struc-
tures, or clusters of effects would be forbidden. Your
theory would be restricted to first-order associations. This
scenario brings to mind the illogic of the converse, popular
practice of theorizing about higher order concepts in the
introduction and discussion sections and then supporting
that theorizing in the results section with atomistic pairwise
comparisons. If a specific contrast interests you, examine it.
If all interest you, ask yourself why. For a detailed treat-
ment of the use of contrasts, see Rosenthal, Rosnow, and
Rubin (in press).

There is a variant of this preoccupation with all pos-
sible pairs that comes with the widespread practice of
printing p values or asterisks next to every correlation in a
correlation matrix. Methodologists frequently point out that
these p values should be adjusted through Bonferroni or
other corrections. One should ask instead why any reader
would want this information. The possibilities are as
follows:

1. All the correlations are "significant." If so, this can
be noted in a single footnote.

2. None of the correlations are "significant." Again,
this can be noted once. We need to be reminded that this
situation does not rule out the possibility that combinations
or subsets of the correlations may be "significant." The
definition of the null hypothesis for the global test may not
include other potential null hypotheses that might be re-
jected if they were tested.

3. A subset of the correlations is "significant." If so,
our purpose in appending asterisks would seem to be to
mark this subset. Using "significance" tests in this way is
really a highlighting technique to facilitate pattern recog-
nition. If this is your goal in presenting results, then it is
better served by calling attention to the pattern (perhaps by
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sorting the rows and columns of the correlation matrix) and
assessing it directly. This would force you, as well, to
provide a plausible explanation.

There is a close relative of all possible pairs called "all
possible combinations." We see this occasionally in the
publishing of higher way factorial ANOVAs that include
all possible main effects and interactions. One should not
imagine that placing asterisks next to conventionally sig-
nificant effects in a five-way ANOVA, for example, skirts
the multiplicity problem. A typical five-way fully factorial
design applied to a reasonably large sample of random data
has about an 80% chance of producing at least one signif-
icant effect by conventional F tests at the .05 critical level
(Hurlburt & Spiegel, 1976).

Underlying the widespread use of all-possible-pairs
methodology is the legitimate fear among editors and re-
viewers that some researchers would indulge in fishing
expeditions without the restraint of simultaneous test pro-
cedures. We should indeed fear the well-intentioned, indis-
criminate search for structure more than the deliberate
falsification of results, if only for the prevalence of wishful
thinking over nefariousness. There are Bonferroni and re-
cent related methods (e.g., Benjamini & Hochberg, 1995)
for controlling this problem statistically. Nevertheless,
there is an alternative institutional restraint. Reviewers
should require writers to articulate their expectations well
enough to reduce the likelihood of post hoc rationaliza-
tions. Fishing expeditions are often recognizable by the
promiscuity of their explanations. They mix ideas from
scattered sources, rely heavily on common sense, and cite
fragments rather than trends.

If, on the other hand, a researcher fools us with an
intriguing result caught while indiscriminately fishing, we
might want to fear this possibility less than we do now. The
enforcing of rules to prevent chance results in our journals
may at times distract us from noticing the more harmful
possibility of publishing bogus theories and methods (ill-
defined variables, lack of parsimony, experimenter bias,
logical errors, artifacts) that are buttressed by evidently
impeccable statistics. There are enough good ideas behind
fortuitous results to make us wary of restricting them. This
is especially true in those areas of psychology where lives
and major budgets are not at stake. Let replications pro-
mote reputations.

Causality. Inferring causality from nonrandom-
ized designs is a risky enterprise. Researchers using
nonrandomized designs have an extra obligation to ex-
plain the logic behind covariates included in their de-
signs and to alert the reader to plausible rival hypoth-
eses that might explain their results. Even in randomized
experiments, attributing causal effects to any one aspect
of the treatment condition requires support from addi-
tional experimentation.

It is sometimes thought that correlation does not prove
causation but "causal modeling" does. Despite the admo-
nitions of experts in this field, researchers sometimes use
goodness-of-fit indices to hunt through thickets of compet-
ing models and settle on a plausible substantive explanation
only in retrospect. McDonald (1997), in an analysis of a

historical data set, showed the dangers of this practice
and the importance of substantive theory. Scheines,
Spirites, Glymour, Meek, and Richardson (1998; discus-
sions following) offer similar cautions from a theoretical
standpoint.

A generally accepted framework for formulating ques-
tions concerning the estimation of causal effects in social
and biomedical science involves the use of "potential out-
comes," with one outcome for each treatment condition.
Although the perspective has old roots, including use by
Fisher and Neyman in the context of completely random-
ized experiments analyzed by randomization-based infer-
ence (Rubin, 1990b), it is typically referred to as "Rubin's
causal model" or RCM (Holland, 1986). For extensions to
observational studies and other forms of inference, see
Rubin (1974, 1977, 1978). This approach is now relatively
standard, even for settings with instrumental variables and
multistage models or simultaneous equations.

The crucial idea is to set up the causal inference
problem as one of missing data, as defined in Rubin's
(1976) article, where the missing data are the values of the
potential outcomes under the treatment not received and the
observed data include the values of the potential outcomes
under the received treatments. Causal effects are defined on
a unit level as the comparison of the potential outcomes
under the different treatments, only one of which can ever
be observed (we cannot go back in time to expose the unit
to a different treatment). The essence of the RCM is to
formulate causal questions in this way and to use formal
statistical methods to draw probabilistic causal inferences,
whether based on Fisherian randomization-based (permu-
tation) distributions, Neymanian repeated-sampling ran-
domization-based distributions, frequentist superpopula-
tion sampling distributions, or Bayesian posterior distribu-
tions (Rubin, 1990a).

If a problem of causal inference cannot be formulated
in this manner (as the comparison of potential outcomes
under different treatment assignments), it is not a problem
of inference for causal effects, and the use of "causal"
should be avoided. To see the confusion that can be created
by ignoring this requirement, see the classic Lord's para-
dox and its resolution by the use of the RCM in Holland
and Rubin's (1983) chapter.

The critical assumptions needed for causal infer-
ence are essentially always beyond testing from the data
at hand because they involve the missing data. Thus,
especially when formulating causal questions from non-
randomized data, the underlying assumptions needed to
justify any causal conclusions should be carefully and
explicitly argued, not in terms of technical properties
like "uncorrelated error terms," but in terms of real
world properties, such as how the units received the
different treatments.

The use of complicated causal-modeling software
rarely yields any results that have any interpretation as
causal effects. If such software is used to produce anything
beyond an exploratory description of a data set, the bases
for such extended conclusions must be carefully presented
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Graphics for Regression
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and not just asserted on the basis of imprecise labeling
conventions of the software.

Tables and figures. Although tables are com-
monly used to show exact values, well-drawn figures need
not sacrifice precision. Figures attract the reader's eye and
help convey global results. Because individuals have dif-
ferent preferences for processing complex information, it
often helps to provide both tables and figures. This works
best when figures are kept small enough to allow space for
both formats. Avoid complex figures when simpler ones will
do. In all figures, include graphical representations of
interval estimates whenever possible.

Bailar and Mosteller (1988) offer helpful information
on improving tables in publications. Many of their recom-
mendations (e.g., sorting rows and columns by marginal
averages, rounding to a few significant digits, avoiding
decimals when possible) are based on the clearly written
tutorials of Ehrenberg (1975, 1981).

A common deficiency of graphics in psychological
publications is their lack of essential information. In most
cases, this information is the shape or distribution of the
data. Whether from a negative motivation to conceal irreg-
ularities or from a positive belief that less is more, omitting
shape information from graphics often hinders scientific
evaluation. Chambers et al. (1983) and Cleveland (1995)
offer specific ways to address these problems. The exam-
ples in Figure 2 do this using two of the most frequent
graphical forms in psychology publications.

Figure 2 shows plots based on data from 80 graduate
students in a Midwestern university psychology depart-
ment, collected from 1969 through 1978. The variables are
scores on the psychology advanced test of the Graduate

Record Examination (GRE), the undergraduate grade point
average (GPA), and whether a student completed a doctoral
degree in the department (PhD). Figure 2A shows a format
appearing frequently in psychology journal articles: two
regression lines, one for each group of students. This
graphic conveys nothing more than four numbers: the
slopes and intercepts of the regression lines. Because the
scales have no physical meaning, seeing the slopes of lines
(as opposed to reading the numbers) adds nothing to our
understanding of the relationship.

Figure 2B shows a scatter plot of the same data with
a locally weighted scatter plot smoother for each PhD
group (Cleveland & Devlin, 1988). This robust curvilinear
regression smoother (called LOESS) is available in modem
statistics packages. Now we can see some curvature in the
relationships. (When a model that includes a linear and
quadratic term for GPA is computed, the apparent interac-
tion involving the PhD and no PhD groups depicted in
Figure 2A disappears.) The graphic in Figure 2B tells us
many things. We note the unusual student with a GPA of
less than 4.0 and a psychology GRE score of 800; we note
the less surprising student with a similar GPA but a low
GRE score (both of whom failed to earn doctoral degrees);
we note the several students who had among the lowest
GRE scores but earned doctorates, and so on. We might
imagine these kinds of cases in Figure 2A (as we should in
any data set containing error), but their location and distri-
bution in Figure 2B tells us something about this specific
data set.

Figure 3A shows another popular format for display-
ing data in psychology journals. It is based on the data set
used for Figure 2. Authors frequently use this format to
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Figure 3
Graphics for Groups

A

800-BO-

700-

r 600-

500-

400-

N
PhD

Y

Note. GRE = Graduate Record Exoaminotion; N = no; Y = yes.

display the results of t tests or ANOVAs. For factorial
ANOVAs, this format gives authors an opportunity to
represent interactions by using a legend with separate sym-
bols for each line. In more laboratory-oriented psychology
journals (e.g., animal behavior, neuroscience), authors
sometimes add error bars to the dots representing the
means.

Figure 3B adds to the line graphic a dot plot repre-
senting the data and 95% confidence intervals on the means
of the two groups (using the t distribution). The graphic
reveals a left skewness of GRE scores in the PhD group.
Although this skewness may not be severe enough to affect
our statistical conclusions, it is nevertheless noteworthy. It
may be due to ceiling effects (although note the 800 score
in the no PhD group) or to some other factor. At the least,
the reader has a right to be able to evaluate this kind of
information.

There are other ways to include data or distributions in
graphics, including box plots and stem-and-leaf plots
(Tukey, 1977) and kernel density estimates (Scott, 1992;
Silverman, 1986). Many of these procedures are found in
modem statistical packages. It is time for authors to take
advantage of them and for editors and reviewers to urge
authors to do so.

Discussion
Interpretation

When you interpret effects, think of credibility, generaliz-
ability, and robustness. Are the effects credible, given the
results of previous studies and theory? Do the features of
the design and analysis (e.g., sample quality, similarity of
the design to designs of previous studies, similarity of the

effects to those in previous studies) suggest the results are
generalizable? Are the design and analytic methods robust
enough to support strong conclusions?

Novice researchers err either by overgeneralizing their
results or, equally unfortunately, by overparticularizing.
Explicitly compare the effects detected in your inquiry with
the effect sizes reported in related previous studies. Do not
be afraid to extend your interpretations to a general class or
population if you have reasons to assume that your results
apply. This general class may consist of populations you
have studied at your site, other populations at other sites, or
even more general populations. Providing these reasons in
your discussion will help you stimulate future research for
yourself and others.

Conclusions

Speculation may be appropriate, but use it sparingly and
explicitly. Note the shortcomings of your study. Remember,
however, that acknowledging limitations is for the purpose
of qualifying results and avoiding pitfalls in future re-
search. Confession should not have the goal of disarming
criticism. Recommendations for future research should be
thoughtful and grounded in present and previous findings.
Gratuitous suggestions ('"further research needs to be
done . . ") waste space. Do not interpret a single study's
results as having importance independent of the effects
reported elsewhere in the relevant literature. The thinking
presented in a single study may turn the movement of the
literature, but the results in a single study are important
primarily as one contribution to a mosaic of study effects.

Some had hoped that this task force would vote to
recommend an outright ban on the use of significance tests
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in psychology journals. Although this might eliminate
some abuses, the committee thought that there were enough
counterexamples (e.g., Abelson, 1997) to justify forbear-
ance. Furthermore, the committee believed that the prob-
lems raised in its charge went beyond the simple question
of whether to ban significance tests.

The task force hopes instead that this report will
induce editors, reviewers, and authors to recognize prac-
tices that institutionalize the thoughtless application of
statistical methods. Distinguishing statistical significance
from theoretical significance (Kirk, 1996) will help the
entire research community publish more substantial results.
Encouraging good design and logic will help improve the
quality of conclusions. And promoting modern statistical
graphics will improve the assessment of assumptions and
the display of results.

More than 50 years ago, Hotelling, Bartky, Deming,
Friedman, and Hoel (1948) wrote, "Unfortunately, too
many people like to do their statistical work as they say
their prayers-merely substitute in a formula found in a
highly respected book written a long time ago" (p. 103).
Good theories and intelligent interpretation advance a dis-
cipline more than rigid methodological orthodoxy. If edi-
tors keep in mind Fisher's (1935) words quoted in the
Analysis section, then there is less danger of methodology
substituting for thought. Statistical methods should guide
and discipline our thinking but should not determine it.
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