

.

Basic Ideas of Factor Analysis

Overview & goals

- Goal of factor analysis: Parsimony
 account for a set of observed variables in terms of a small number of latent, underlying constructs (common factors).
 - Fewer common factors than PCA components
 - Unlike PCA, does not assume that variables are measured without error
- Observed variables can be modeled as regressions on common factors
- Common factors can "account for" or explain the correlations among observed variables
- How many different underlying constructs (common factors) are needed to account for correlations among a set of observed variables?
 - Rank of correlation matrix = number of *linearly independent* variables.
 - Factors of a matrix: $\mathbf{R} = \mathbf{\Lambda} \mathbf{\Lambda}^{\mathsf{T}}$ ("square root" of a matrix)
- Variance of each variable can be decomposed into common variance (communality) and unique variance (uniqueness)

Basic ideas: 1. Linear regression on common factors

- A set of observed variables, x₁, x₂,..., x_p is considered to arise as a set of linear combinations of some *unobserved*, *latent variables* called *common factors*, ξ₁, ξ₂,..., ξ_k.
- That is, each variable can be expressed as a regression on the common factors. For two variables and one common factor, *ξ*, the model is:

• The common factors are shared among two or more variables. The unique factor, *z_i*, associated with each variable represents the unique component of that variable.

Basic ideas of factor analysis Linear regression on common factors

Basic ideas: 1. Linear regression on common factors

Assumptions:

• Common and unique factors are uncorrelated:

$$r(\xi, \mathbf{z}_1) = r(\xi, \mathbf{z}_2) = \mathbf{0}$$

• Unique factors are all uncorrelated and centered:

$$r(z_1,z_2)=0 \qquad E(z_i)=0$$

- This is a critical difference between factor analysis and component analysis: in PCA, the residuals are correlated.
- Another critical difference— more important— is that factor analysis only attempts to account for common variance, not total variance
- (The second assumption can be relaxed in CFA and SEM models)

Basic ideas of factor analysis Linear regression on common factors

For *k* common factors, the common factor model can be expressed as

$$\begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{p} \end{bmatrix} = \begin{bmatrix} \lambda_{11} & \cdots & \lambda_{1k} \\ \lambda_{21} & \cdots & \lambda_{2k} \\ \vdots & \vdots & \vdots \\ \lambda_{p1} & \vdots & \lambda_{pk} \end{bmatrix} \begin{bmatrix} \xi_{1} \\ \vdots \\ \xi_{k} \end{bmatrix} + \begin{bmatrix} \mathbf{z}_{1} \\ \mathbf{z}_{2} \\ \vdots \\ \mathbf{z}_{p} \end{bmatrix}$$
(1)

or, in matrix terms:

$$\mathbf{x} = \Lambda \boldsymbol{\xi} + \boldsymbol{z}$$
 (2)

This model is not testable, since the factors are unobserved variables. However, the model (2) implies a particular form for the variance-covariance matrix, Σ , of the observed variables, which is testable:

$$\boldsymbol{\Sigma} = \boldsymbol{\Lambda} \boldsymbol{\Phi} \boldsymbol{\Lambda}^{\mathsf{T}} + \boldsymbol{\Psi} \tag{3}$$

where:

- $\Lambda_{p \times k} =$ factor pattern ("loadings")
- $\Phi_{k \times k}$ = matrix of correlations among factors.
- $\Psi =$ diagonal matrix of unique variances of observed variables.

It is usually assumed initially that the factors are uncorrelated ($\Phi = I$), but this assumption may be relaxed if oblique rotation is used.

Basic ideas of factor analysis Partial linear independence

Basic ideas: 2. Partial linear independence

• The factors "account for" the correlations among the variables, since the variables may be correlated *only* through the factors.

Basic ideas of factor analysis Partial linear independence

 If the common factor model holds, the partial correlations of the observed variables with the common factor(s) partialled out are all zero:

$$r(\mathbf{x}_i,\mathbf{x}_j|\xi) = r(\mathbf{z}_i,\mathbf{z}_j) = 0$$

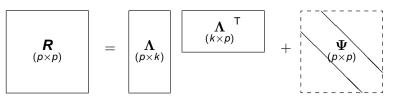
• With one common factor, this has strong implications for the observed correlations:

$$\begin{aligned} r_{12} &= E(x_1, x_2) = E[(\lambda_1 \xi + z_1)(\lambda_2 \xi + z_2)] \\ &= \lambda_1 \lambda_2 \\ r_{13} &= \lambda_1 \lambda_3 \\ \text{ie } r_{ij} &= \lambda_i \lambda_j \end{aligned}$$

• That is, the correlations in any pair of rows/cols of the correlation matrix are proportional *if the one factor model holds*. The correlation matrix has the structure:

$$R_{(p \times p)} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_p \end{bmatrix} \begin{bmatrix} \lambda_1 & \lambda_2 & \dots & \lambda_p \end{bmatrix} + \begin{bmatrix} u_1^2 & & & \\ & u_2^2 & & \\ & & \ddots & \\ & & & & u_p^2 \end{bmatrix}$$

 Similarly, if the common factor model holds with k factors, the pattern of correlations can be reproduced by the product of the matrix of factor loadings, Λ and its transpose:



Basic ideas of factor analysis Partial linear independence

Simple example

Consider the following correlation matrix of 5 measures of "mental ability"

x1	1.00	.72	.63	.54	.45
x2	.72	1.00	.56	.48	.40
x3	.63	.56	1.00	.42	.35
x4	.54	.48	.42	1.00	.30
x5	.45	.40	.35	.30	1.00

- These correlations are exactly consistent with the idea of a single common factor (g).
- The factor loadings, or correlations of the variables with g are

• e.g.,
$$r_{12} = .9 \times .8 = .72$$
; $r_{13} = .9 \times .7 = .63$; etc.

• Thus, the correlation matrix can be expressed exactly as

$$R_{(5\times5)} = \begin{bmatrix} .9\\ .8\\ .7\\ .6\\ .5 \end{bmatrix} \begin{bmatrix} .9 & .8 & .7 & .6 & .5 \end{bmatrix} + \begin{bmatrix} .19\\ .36\\ .51\\ .6 & .64\\ .75 \end{bmatrix}$$

Basic ideas of factor analysis Partial linear independence

Implications

The implications of this are:

- The matrix (*R* − Ψ), i.e., the correlation matrix with communalitites on the diagonal is of rank *k* ≪ *p*. [PCA: rank(*R*) = *p*]
- Thus, FA should produce fewer factors than PCA, which "factors" the matrix *R* with 1s on the diagonal.
- The matrix of correlations among the variables with the factors partialled out is:

$$(\boldsymbol{R} - \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\mathsf{T}}) = \boldsymbol{\Psi} = \begin{bmatrix} u_1^2 & & \\ & \ddots & \\ & & u_p^2 \end{bmatrix} = a \text{ diagonal matrix}$$

• Thus, if the *k*-factor model fits, there remain no correlations among the observed variables when the factors have been taken into account.

Basic ideas of factor analysis Partial linear independence: demonstration

Partial linear independence: demonstration

- Generate two factors, MATH and VERBAL.
- Then construct some observed variables as linear combinations of these.

data scores; drop n;

```
*-- 800 observations;
do N = 1 to 800;
  MATH = normal(13579);
  VERBAL= normal(13579) ;
  mat test= normal(76543) + 1.*MATH - .2*VERBAL;
  eng test= normal(76543) + .1*MATH + 1.*VERBAL;
  sci_test= normal(76543) + .7*MATH - .3*VERBAL;
  his test= normal(76543) - .2*MATH + .5*VERBAL;
  output;
  end;
label MATH = 'Math Ability Factor'
      VERBAL = 'Verbal Ability Factor'
      mat test = 'Mathematics test'
      eng test = 'English test'
      sci test = 'Science test'
      his_test = 'History test';
```

Basic ideas of factor analysis Partial linear independence: demonstration

Partial linear independence: demonstration

proc corr nosimple noprob; var mat_test eng_test sci_test his_test; title2 'Simple Correlations among TESTS';

<pre>mat_test</pre>	eng_test	sci_test	his_test
1.000	-0.069	0.419	-0.144
-0.069	1.000	-0.097	0.254
0.419	-0.097	1.000	-0.227
-0.144	0.254	-0.227	1.000
	1.000 -0.069 0.419	1.000 -0.069 -0.069 1.000 0.419 -0.097	1.000 -0.069 0.419 -0.069 1.000 -0.097 0.419 -0.097 1.000

proc corr nosimple noprob;

var mat_test eng_test sci_test his_test;

partial MATH VERBAL;

title2 'Partial Correlations, partialling Factors';

	mat_test	eng_test	sci_test	his_test	
Mathematics test	1.000	-0.048	-0.015	0.035	
English test	-0.048	1.000	0.028	-0.072	
Science test	-0.015	0.028	1.000	-0.064	
History test	0.035	-0.072	-0.064	1.000	

Basic ideas of factor analysis Common variance vs. unique variance

Basic ideas: 3. Common variance vs. unique variance

- Factor analysis provides an account of the variance of each variable as common variance (*communality*) and unique variance (*uniqueness*).
- From the factor model (with uncorrelated factors, $\Phi = I$),

$$\mathbf{x} = \Lambda \boldsymbol{\xi} + \mathbf{z}$$
 (4)

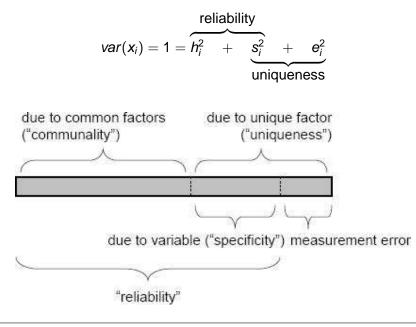
it can be shown that the common variance of each variable is the sum of squared loadings:

$$var(x_i) = \lambda_{i1}^2 + \cdots + \lambda_{ik}^2 + var(z_i)$$

$$= h_i^2$$
(communality) + u_i^2 (uniqueness)

Basic ideas of factor analysis Common variance vs. unique variance

If a measure of reliability is available, the unique variance can be further divided into error variance, e_i^2 , and specific variance, s_i^2 . Using standardized variables:



Basic ideas of factor analysis Common variance vs. unique variance

Decomposing variance

E.g., for four tests, where x_1, x_2 have reliability $r_{x_ix_i} = .80, x_3, x_4$ have reliability $r_{x_ix_i} = .50$, and

$$\begin{array}{rcl} x_1 &=& .8\xi + .6z_1 \\ x_2 &=& .6\xi + .8z_2 \\ x_3 &=& .5\xi + .866z_3 \\ x_4 &=& .4\xi + .917z_4 \end{array}$$

we can break down the variance of each variable as:

	var	=	common	+	(unique	ightarrowS	pecifi	C + 0	error)
<i>x</i> ₁ :	1	=	.64	+	.36	\rightarrow	.16	+	.20
<i>x</i> ₂ :	1	=	.36	+	.64	\rightarrow	.44	+	.20
x 3:	1	=	.25	+	.75	\rightarrow	.25	+	.50
X 4:	1	=	.16	+	.84	\rightarrow	.34	+	.50

Factor estimation methods Basic ideas

Factor Estimation Methods: Basic ideas

Correlations or covariances?

Correlations or covariances?

As we saw in PCA, factors can be extracted from either the covariance matrix (Σ) of the observed variables, with the common factor model:

$$\mathbf{\Sigma} = \mathbf{\Lambda} \mathbf{\Phi} \mathbf{\Lambda}^\mathsf{T} + \mathbf{\Psi}$$

or the correlation matrix (R), with the model

$$oldsymbol{\mathcal{R}} = oldsymbol{\Lambda} oldsymbol{\Phi} oldsymbol{\Lambda}^{\mathsf{T}} + oldsymbol{\Psi}$$

- If the variables are standardized, these are the same: $\mathbf{R} = \Sigma$
- If the units of the variables are important & meaningful, analyze Σ
- Some methods of factor extraction are scale free— you get equivalent results whether you analyse R or Σ .
- Below, I'll describe things in terms of Σ .

Factor estimation methods Basic ideas

Factor Estimation Methods: Basic ideas

Common characteristics

Many methods of factor extraction for EFA have been proposed, but they have some common characteristics:

- Initial solution with uncorrelated factors ($\Phi = I$)
 - The model becomes

 $oldsymbol{\Sigma} = oldsymbol{\Lambda}oldsymbol{\Lambda}^{\mathsf{T}} + oldsymbol{\Psi}$

• If we know (or can estimate) the communalities (= 1 - uniqueness = 1 - ψ_{ii}), we can factor the "reduced covariance (correlation) matrix", $\Sigma - \Psi$

$$\boldsymbol{\Sigma} - \boldsymbol{\Psi} = \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\mathsf{T}} = (\boldsymbol{U} \boldsymbol{D}^{1/2}) (\boldsymbol{D}^{1/2} \boldsymbol{U}^{\mathsf{T}})$$
(5)

- In (5), *U* is the matrix of eigenvectors of (Σ Ψ) and *D* is the diagonal matrix of eigenvalues.
- Initial estimates of communalities: A good prior estimate of the communality of a variable is its' R² (SMC) with all other variables.

$$SMC_i \equiv R_{x_i \mid others}^2 \leq h_i^2 = communality = 1 - \psi_{ii}$$

Factor Estimation Methods: Basic ideas

Common characteristics

- Most iterative methods cycle between:
 - estimating factor loadings(given communality estimates) and
 - estimating the communalities (given factor loadings).
 - The process stops when communalities don't change too much.
- The details of the algorithm are:
 - Obtain initial estimate of $\widehat{\Psi}$ e.g., SMCs
 - 2 Estimate $\widehat{\Lambda}$ from eigenvectors/values of $(\Sigma \widehat{\Psi}) = \Lambda \Lambda^{\mathsf{T}}$
 - Solution Update estimate of $\widehat{\Psi}$,
 - $\overline{\mathbf{0}}$ Return to step 2 if max $|\widehat{\mathbf{\Psi}} \widehat{\mathbf{\Psi}}_{\text{last}}| < \epsilon$

Factor estimation methods Basic ideas

Factor Estimation Methods: Fit functions

Given $S_{(p \times p)}$, an observed variance-covariance matrix of $\boldsymbol{x}_{(p \times 1)}$, the computational problem is to estimate $\widehat{\Lambda}$, and $\widehat{\Psi}$ such that:

 $\widehat{\boldsymbol{\Sigma}} = \widehat{\boldsymbol{\Lambda}} \widehat{\boldsymbol{\Lambda}}^{\mathsf{T}} + \widehat{\boldsymbol{\Psi}} \quad pprox \quad \boldsymbol{\mathsf{S}}$

- Let $F(\mathbf{S}, \widehat{\mathbf{\Sigma}})$ = measure of distance between *S* and $\widehat{\mathbf{\Sigma}}$. Factoring methods differ in the measure *F* used to assess badness of fit:
 - Iterated PFA (ULS, PRINIT) [NOT Scale Free] Minimizes the sum of squares of differences between **S** and $\hat{\Sigma}$.

$$F_{LS} = tr(\mathbf{S} - \widehat{\mathbf{\Sigma}})^2$$

• Generalized Least Squares (GLS) [Scale Free] Minimizes the sum of squares of differences between **S** and $\hat{\Sigma}$, weighted inversely by the variances of the observed variables.

$$F_{GLS} = tr(I - \mathbf{S}^{-1}\widehat{\mathbf{\Sigma}})^2$$

Factor estimation methods Basic ideas

Factor Estimation Methods: Fit functions

 Maximum likelihood [Scale Free] Finds the parameters that maximize the likelihood ("probability") of observing the data (S) given that the FA model fits for the population Σ.

$$F_{ML} = tr(\mathbf{S}\widehat{\Sigma}^{-1}) - \log|\widehat{\Sigma}^{-1}\mathbf{S}| - p|$$

- In large samples, $(N-1)F_{min} \sim \chi^2$
- The hypothesis tested is

 H_0 : k factors are sufficient

VS.

- $H_1 :> k$ factors are required
- Good news: This is the only EFA method that gives a significance test for the number of common factors.
- Bad news: This χ^2 test is extremely sensitive to sample size

Factor estimation methods Example: Spearman's 'Two-factor' theory	Factor estimation methods Example: Spearman's 'Two-factor' theory
Example: Spearman's 'two-factor' theory	Example: Spearman's 'two-factor' theory
<pre>Spearman used this data on 5 tests to argue for a 'two-factor' theory of ability</pre>	Use METHOD=ML to test 1 common factor model proc factor data=spear5 method=ml /* use maximum likelihood */ residuals /* print residual correlations */ nfact=1; /* estimate one factor */ title2 'Test of hypothesis of one general factor'; Initial output: Initial Factor Method: Maximum Likelihood Prior Communality Estimates: SMC TEST1 TEST2 TEST3 TEST4 TEST5 0.334390 0.320497 0.249282 0.232207 0.123625 1 factors will be retained by the NFACTOR criterion. Iter Criterion Ridge Change Communalities 1 0.00761 0.000 0.16063 0.4950 0.4635 0.3482 0.3179 0.1583 2 0.00759 0.000 0.00429 0.4953 0.4662 0.3439 0.3203 0.1589 3 0.00759 0.000 0.00020 0.4954 0.4662 0.3439 0.3203 0.1587
Factor estimation methods Example: Spearman's 'Two-factor' theory	Factor estimation methods Example: Spearman's 'Two-factor' theory Example: Spearman's 'two-factor' theory
Factor estimation methods Example: Spearman's 'Two-factor' theory Hypothesis tests & fit statistics:	
	Example: Spearman's 'two-factor' theory Factor pattern ("loadings"):
Hypothesis tests & fit statistics:	Example: Spearman's 'two-factor' theory

		Factor estimation	methods Example	: Spearman's 'Two-factor' theory	Factor estimation methods Example: Holzinger & Swineford 9 abilities data
Examp	le: Spear	man's '	two-fact	or' theory	Example: Holzinger & Swineford 9 abilities data
Common	and unique va	ariance:			Nine tests from a battery of 24 ability tests given to junior high school students at two Chicago schools in 1939.
	FACTOR1	Common	Unique		data psych9(type=CORR); Input _NAME_ \$1-3 _TYPE_ \$5-9 X1 X2 X4 X6 X7 X9 X10 X12 X13;
TEST1	0.70386	.495	.505	Mathematical judgement	label X1='Visual Perception' X2='Cubes' X4='Lozenges' X6='Paragraph Comprehen' X7='Sentence Completion'
TEST2	0.68282	.466	.534	Controlled association	X9='Word Meaning' X10='Addition' X12='Counting Dots'
TEST3	0.58643	.344	.656	Literary interpretation	X13='Straight-curved Caps' ; datalines;
TEST4	0.56594	.320	.680	Selective judgement	X1 CORR 1
TEST5	0.39837	.159	.841	Spelling	X2 CORR .318 1
•	0.495 = .7038				X4 CORR .436 .419 1. . <t< td=""></t<>
Math loadi	, 0	ment is the	e dest mea	sure of the g factor – highest	X10 CORR .116 .057 .056 .203 .246 .170 1 X12 CORR .314 .145 .229 .095 .181 .113 .585 1 X13 CORR .489 .239 .361 .309 .345 .280 .408 .512 1.

Spelling is the worst measure – lowest loading

Example: Holzinger & Swineford 9 abilities data

145

29.60

6.89

145

4.43

145

8.29

24.80 15.97

Ν

run;

MEAN

RELI

STD

"Little Jiffy:" Principal factor analysis using SMC, Varimax rotation

• The 9 tests were believed to tap 3 factors: Visual, Verbal & Speed

145

3.36

145

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

4.63

9.95 18.85

.7563 .5677 .9365 .7499 .7536 .8701 .9518 .9374

145

145

90.18 68.59

7.92 23.70

145

109.75

20.92

145

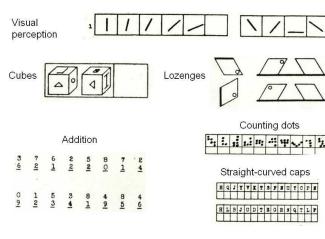
- The default analysis is METHOD=PRINCIPAL, PRIORS=ONE \leftrightarrow PCA!
- The results are misleading, about both the number of factors and their interpretation.

```
title2 'Principal factor solution';
proc Factor data=psych9
    method=PRINCIPAL
    priors=SMC
    round flag=.3
    scree
    rotate=VARIMAX;
run;
```

- method=PRINCIPAL is non-iterative; method=PRINIT uses iterated PFA
- ROUND option prints coefficients ×100, rounded; FLAG option prints a * next to larger values

Holzinger & Swineford 9 abilities: Sample items

Factor estimation methods Example: Holzinger & Swineford 9 abilities data



- Visual Perception, Cubes, Lozenges: Visual tests
- Paragraph Comprehension, Sentence Completion, Word Meaning: Verbal tests
- Addition, Counting Dots, Straight-curved Caps: Speed tests

Example: Holzinger & Swineford 9 abilities data

Output: Eigenvalues

1

Eigenvalues of the Reduced Correlation Matrix: Total = 4.05855691 Average = 0.45095077 Eigenvalue Difference Proportion Cumulative 3.07328008 1.99393040 0.7572 0.7572 1.07934969 0.45916492 0.2659 1.0232

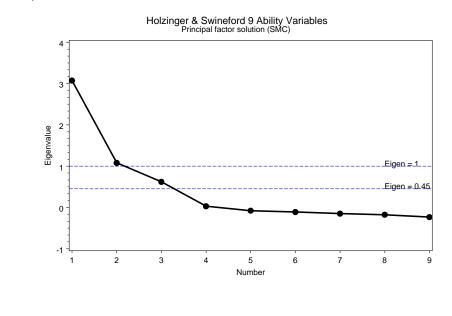
- 2	1.07934969	0.45916492	0.2659	1.0232
3	0.62018476	0.58982990	0.1528	1.1760
4	0.03035486	0.10824191	0.0075	1.1835
5	07788705	0.03243783	-0.0192	1.1643
6	11032489	0.03864959	-0.0272	1.1371
7	14897447	0.02648639	-0.0367	1.1004
8	17546086	0.05650435	-0.0432	1.0572
9	23196521		-0.0572	1.0000

2 factors will be retained by the PROPORTION criterion.

 NB: The default criteria (PROPORTION=1.0 or MINEIGEN=0) are seriously misleading.

Example: Holzinger & Swineford 9 abilities data

Scree plot



Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

Default 2-factor solution

Initial (unrotated) factor pattern:

	Factor Pat	tern		
		Factor1	Factor2	
X1	Visual Perception	57 🖸	. 13	
X2	Cubes	37 🖸	. 4	
X4	Lozenges	53 🖸	- 2	
X6	Paragraph Comprehen	74 🖸	-39	*
X7	Sentence Completion	72 🖸	-31	*
X9	Word Meaning	71 🖸	-38	*
X10	Addition	41 *	44	*
X12	Counting Dots	46 🖸	÷ 59	*
X13	Straight-curved Caps	62 🖸	• 36	*

Interpretation ??

• F1: general factor; F2: verbal vs. speed ??

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

Default 2-factor solution

Varimax rotated factor pattern:

	Rotated Factor	Pattern			
		Factor1		Factor2	
X1	Visual Perception	39	*	43	*
X2	Cubes	28		25	
X4	Lozenges	42	*	32	*
X6	Paragraph Comprehen	83	*	11	
X7	Sentence Completion	77	*	17	
x9	Word Meaning	80	*	10	
X10	Addition	8		59	*
X12	Counting Dots	3		75	*
X13	Straight-curved Caps	30		65	*

Interpretation ??

• Don't be mislead by the stars!

Factor estimation methods Example: Holzinger & Swineford 9 abilities data	Factor estimation methods Example: Holzinger & Swineford 9 abilities data
Example: Holzinger & Swineford 9 abilities data Maximum likelihood solutions	Example: Holzinger & Swineford 9 abilities data Maximum likelihood solution, k=2
	Significance Tests Based on 145 Observations
<pre>title? 'Maximum liklihood solution, k=2'; proc Factor data=psych9 method=ML NFact=2; run; In PCA, you can obtain the solution for all components, and just delete the ones you don't want. In iterative EFA methods, you have to obtain separate solutions for different numbers of common factors. Here, we just want to get the \chi^2 test, and other fit statistics for the k = 2 factor ML solution.</pre>	TestDFChi-SquarePrH0: No common factors36483.4478<.0001
Factor estimation methods Example: Holzinger & Swineford 9 abilities data	Factor estimation methods Example: Holzinger & Swineford 9 abilities data
Example: Holzinger & Swineford 9 abilities data Maximum likelihood solution: k=3	Example: Holzinger & Swineford 9 abilities data Maximum likelihood solution, k=3
proc Factor data=psych9 Outstat=FACTORS /* Output data set */	Pr >TestDFDFChi-SquareH0: No common factors36483.4478<.0001
method=ML NFact=3 Round flag=.3	H0: No common factors36483.4478<.0001HA: At least one common factorH0: 3 Factors are sufficient129.54530.6558HA: More factors are needed
 Rotate=VARIMAX; Specify k = 3 factors Obtain an OUTSTAT= data set— I'll use this to give a breakdown of the variance of each variable A VARIMAX rotation will be more interpretable than the initial solution 	Chi-Square without Bartlett's Correction9.948300Akaike's Information Criterion-14.051700Schwarz's Bayesian Criterion-49.772505Tucker and Lewis's Reliability Coefficient1.016458• $H_0: k = 3$ is not rejected hereThe χ^2 test is highly dependent on sample size; other fit measures (later)

Factor estimation methods	Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

Maximum likelihood solution, k=3

Unrotated factor solution:

		Factor1		Factor2		Factor3	
		1400011		1400012		1400015	
X1	Visual Perception	51	*	18		43	*
X2	Cubes	32	*	7		39	*
X4	Lozenges	48	*	8		49	*
X6	Paragraph Comprehen	81	*	-30	*	-8	
X7	Sentence Completion	80	*	-21		-16	
X9	Word Meaning	77	*	-28		-4	
X10	Addition	40	*	55	*	-37	*
X12	Counting Dots	40	*	72	*	-6	
X13	Straight-curved Caps	56	*	43	*	16	

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

Maximum likelihood solution, k=3

Varimax rotated factor solution:

	Rotated	Factor Pa	atte	ern			
		Factor1		Factor2		Factor3	
X1	Visual Perception	20		19		64	*
X2	Cubes	11		4		50	*
X4	Lozenges	21		7		65	*
X6	Paragraph Comprehen	84	*	7		23	
X7	Sentence Completion	80	*	18		17	
X9	Word Meaning	78	*	6		25	
X10	Addition	17		76	*	-5	
X12	Counting Dots	-1		79	*	26	
X13	Straight-curved Caps	20		52	*	47	*

- Factor 1: Verbal
- Factor 2: Speed
- Factor 3: Visual + S-c Caps ?

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

Decomposing the variance of each variable

Using the OUTSTAT= data set (communalities) and the reliabilities in the PSYCH9 data set, we can decompose the variance of each variable...

Name	Reliability	Common Variance	Unique Variance	Specific Variance	Error Variance
Visual Perception	0.756	0.482	0.518	0.275	0.244
Cubes	0.568	0.264	0.736	0.304	0.432
Lozenges	0.937	0.475	0.525	0.462	0.064
Paragraph Comprehen	0.750	0.760	0.240	-0.010	0.250
Sentence Completion	0.754	0.702	0.298	0.052	0.246
Word Meaning	0.870	0.677	0.323	0.193	0.130
Addition	0.952	0.607	0.393	0.345	0.048
Counting Dots	0.937	0.682	0.318	0.256	0.063
Straight-curved Cap	s 0.889	0.525	0.475	0.364	0.111

Assuming k = 3 factors: Verbal, Speed, Visual—

- Paragraph comprehension and Sentence completion are better measures of the Verbal factor, even though Word meaning is more reliable.
- Addition and Counting Dots are better measures of Speed; S-C Caps also loads on the Visual factor
- Visual factor: Lozenges most reliable, but Visual Perception has greatest common variance. Cubes has large specific variance and error variance.

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Interlude: Significance tests & fit statistics for EFA I

- As we have seen, ML solution $\rightarrow \chi^2 = (N-1)F_{min}$ (large sample test)
- Adding another factor always reduces χ^2 , but also reduces df.
 - χ^2/df gives a rough measure of goodness-of-fit, taking # factors into account. Values of $\chi^2/df <= 2$ are considered "good."
 - Test Δχ² = χ²_m χ²_{m+1} on Δdf = df_m df_{m+1} degrees of freedom
 Pr(Δχ², Δdf) tests if there is a significant improvement in adding one more
 - Pr(Δχ², Δdf) tests if there is a significant improvement in adding one more factor.
- Akaike Information Criterion (AIC): penalizes model fit by 2 × # free parameters

$$A/C = \chi^2 + 2(\# \text{ free parameters}) = \chi^2 + [p(p-1) - 2df]$$

• Bayesian Information Criterion (BIC): greater penalty with larger N

 $BIC = \chi^2 + \log N(\# \text{ free parameters})$

• AIC and BIC: choose model with the smallest values

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Interlude: Significance tests & fit statistics for EFA II

• Tucker-Lewis Index (TLI) : Compares the χ^2/df for the null model (k = 0) to the χ^2/df for a proposed model with k = m factors

$$TLI = \frac{(\chi_0^2/df_0) - (\chi_m^2/df_m)}{(\chi_0^2/df_0) - 1}$$

- Theoretically, 0 \leq TLI \leq 1. "Acceptable" models should have at least TLI > .90; "good" models: TLI > .95
- In CFA, there are many more fit indices. Among these, the Root Mean Square Error of Approximation (RMSEA) is popular now.

$$RMSEA = \sqrt{rac{(\chi^2/df) - 1}{N - 1}}$$

• "Adequate" models have RMSEA \leq .08; "good' models: RMSEA \leq .05.

Example: Holzinger & Swineford 9 abilities data

Collect the test statistics in tables for comparison...

k	Test	ChiSq	DF	Prob ChiSq
0	H0: No common factors H0: 1 Factor is sufficient	483.4478 172.2485	36 27	<.0001 <.0001
2	H0: 2 Factors are sufficient	61.1405	19	<.0001
3	H0: 3 Factors are sufficient	9.5453	12	0.6558

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

From these, various fit indices can be calculated...

k	Chi2/df	diff Chi2	diff DF	Pr > diff	AIC	BIC	TLI
0	13.4291						
1	6.3796	311.199	9	0	123.805	43.433	0.5672
2	3.2179	111.108	8	0	25.416	-31.142	0.8216
3	0.7954	51.595	7	<.0001	-14.052	-49.772	1.0165

All measures agree on k = 3 factors!

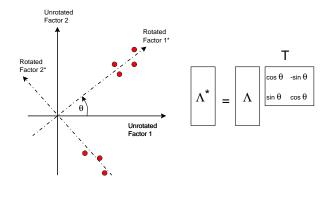
Factor and component rotation

Factor and Component Rotation

- In EFA, the initial factors are extracted using some *arbitrary* constraints to make the solution unique (estimable).
- If Λ is an initial factor loading matrix, any rotated loading matrix Λ* fits equally well

$$\Lambda^{\star} = \Lambda \; \mathcal{\textbf{T}} \mapsto \mathcal{F}(\Lambda^{\star}, \Psi^{\star}) = \mathcal{F}(\Lambda, \Psi)$$

The rotated Λ^{*} may be easier to interpret.



Factor and component rotation

Factor and Component Rotation

It is easiest to demonstrate this for regression:

In multiple regression, you can replace the *p* regressors with a set of *p* linear combinations of them without changing the R².

```
data demo;
  do i=1 to 20;
    x1 = normal(0); x2 = normal(0); *- random data;
    y = x1 + x2 + normal(0);
    x3 = x1 + x2; x4 = x1 - x2; *- rotate 45 deg;
    output;
    end;
proc reg data=demo;
    model y = x1 x2;
    model y = x3 x4;
```

Factor and component rotation

Factor and Component Rotation

• The models using (x1, x2) and (x3, x4) both have the same R^2 :

Root MSE	1.36765	R-square	0.6233
Variable DF	Parameter Estimate	Standard Error	T for H0: Parameter=0
INTERCEP 1 X1 1 X2 1	-0.234933 1.151320 1.112546	0.30603261 0.37796755 0.29270456	-0.768 3.046 3.801
Root MSE	1.36765	R-square	0.6233
Root MSE Variable DF	1.36765 Parameter Estimate	R-square Standard Error	0.6233 T for H0: Parameter=0

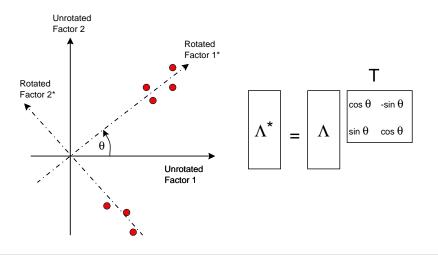
- Similarly, in component (or factor) analysis, you can replace a set of components by any (non-singular) set of linear combinations of them without changing the variation accounted for.
- This process is called rotation

Factor and component rotation Thurstone's Postulates of Simple Structure

Simple structure

To make the interpretation of factors as simple as possible:

- Each variable should have non-zero loadings on a small number of factors preferably 1.
- Each factor should have major loadings on only a few variables the rest near 0.



Rotating Factor Solutions

- Rotation does not affect the overall goodness of fit; communalities are identical.
- The need for rotation arises because factor solutions are interpreted based on the size of loadings.
- Rotated and unrotated solutions may differ greatly in interpretation
- Ex: Political attitudes toward government policies:

		Unrc	otated	Rota	ted
		Fl	F2	F1′	F2′
	spend more on schools	.766	232	.783	.163
х2:	reduce unemployment	.670	203	.685	.143
х3:	control big business	.574	174	.587	.123
X4:	relax immigration	.454	.533	.143	.685
	minority job programs	.389	.457	.123	.587
X6:	expand childcare	.324	.381	.102	.489

Factor and component rotation Rotation methods: Overview

Rotation methods

- Purpose:
 - Make the pattern (loadings) more interpretable
 - Increase number of loadings near 1, 0, or -1
 - \rightarrow simple structure
 - Only for EFA— in CFA, we specify (and test) a hypothesized factor structure directly.
- Orthogonal rotatation factors remain uncorrelated
 - Varimax tries to clean up the columns of the pattern matrix
 - Quartimax tries to clean up the rows of the pattern matrix
 - Equamax tries to do both
- Oblique rotation factors become correlated, pattern may be simpler
 - **Promax** uses result of an orthogonal method and tries to make it better, allowing factors to become correlated.
 - Crawford-Ferguson a family of methods, allowing weights for row parsimony and column parsimony.
- Before CFA, Procrustes (target) rotation was used to test how close you could come to a hypothesized factor pattern.

Analytic rotation methods

These all attempt to reduce ideas of "simple structure" to mathematical functions which can be optimized.

 Varimax — Minimize complexity of each factor (# non-zero loadings) → maximize variance of each *column* of squared loadings.

Factor and component rotation Rotation methods: Overview

- $\sigma_j^2 = [\Sigma_i(\lambda_{ij}^2)^2 (\Sigma_i \lambda_{ij}^2)/p]/p$ = variance of col *j* of squared loadings
- Rotate pairs of cols. j, j' to find angle to make $\sigma_j^2 + \sigma_{j'}^2$ large
- Repeat for all pairs of columns.
- Orthomax Minimize complexity of each variable.
 - Communality = $h_i^2 = \sum_{j=1}^k \lambda_{ij}^2$ = constant (unchanged by rotation)
 - $\bullet \rightarrow$ minimize complexity by maximizing variance of squared loadings in each row.

$$(h_i^2)^2 = (\Sigma_j \lambda_{ij}^2)^2 = \sum_{j} \lambda_{ij}^4 + 2(\Sigma_{m < n} \lambda_{im}^2 \lambda_{in}^2) = \text{constant}$$

• **Equamax** — Tries to achieve simple structure in both rows (variables) and columns (factors).

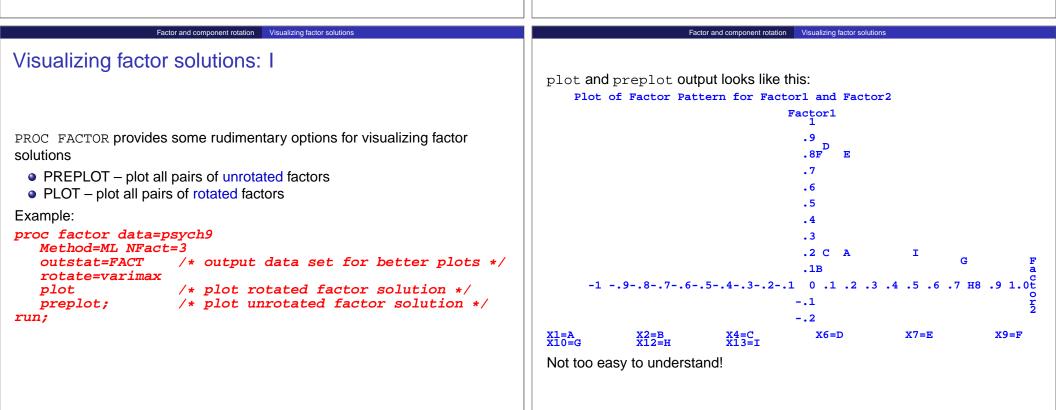
Example: Holzinger & Swineford 9 abilities data

Maximum likelihood solution, k=3

proc factor data=psy Method=ML NFact=3		
round flag=.3		
	/* output data set for rotations *	/
stderr	<pre>/* get standard errors */</pre>	
	/* varimax rotation */	
run;		

Varimax rotated factor solution:

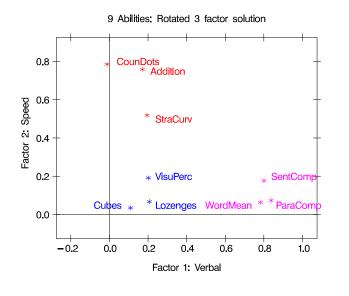
	Rotated	Factor Pa	tte	ern			
		Factor1		Factor2		Factor3	
X1	Visual Perception	20		19		64	*
X2	Cubes	11		4		50	*
X4	Lozenges	21		7		65	*
X6	Paragraph Comprehen	84	*	7		23	
X7	Sentence Completion	80	*	18		17	
X9	Word Meaning	78	*	6		25	
X10	Addition	17		76	*	-5	
X12	Counting Dots	-1		79	*	26	
X13	Straight-curved Caps	20		52	*	47	*



Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: I

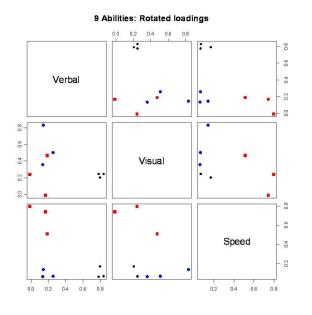
Custom plots using the outstat data set and the plotit macro:



Factor and component rotation Visualizing factor solutions

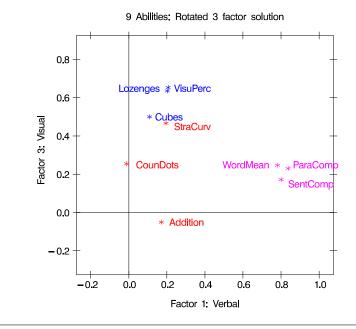
Visualizing factor solutions: I

Scatterplot matrix of rotated loadings (colored by factor):



Visualizing factor solutions: I

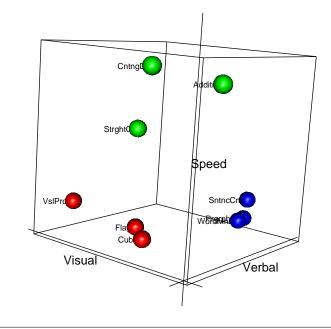
Custom plots using the outstat data set and the plotit macro:



Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: I

3D scatterplot (colored by factor):



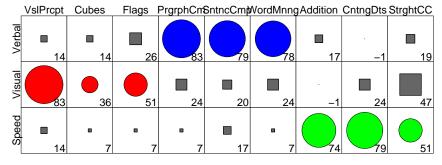
Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: II – Tableplots

Tableplots:

- Graphic depiction of values in a table + numbers
- Symbol size ~ table value
- Shape, color and other attributes can be designed to show a pattern
- Even more useful for comparing factor solutions

Tableplot of varimax rotated loadings



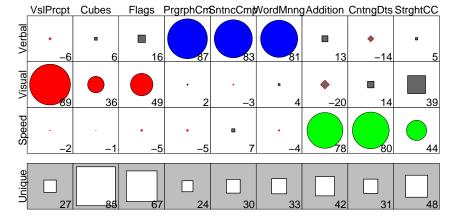
Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: II – Tableplots

Tableplots:

• Other information is easily added (e.g., unique variances)

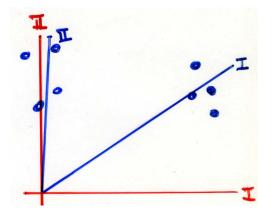
Tableplot of varimax rotated loadings



Factor and component rotation Oblique rotations

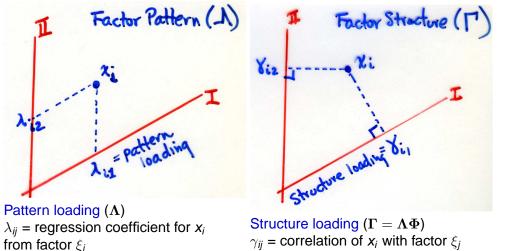
Oblique rotations

- Orthogonal factors are often unnecessarily restrictive; they arise purely from mathematical convenience.
- One can sometimes achieve a simpler structure in the factor loadings by allowing the factors to be correlated.
- For latent variables in a given domain (intelligence, personality, depression), correlated factor often make more sense.



Factor and component rotation Oblique rotations

Oblique rotations



Factor and component rotation Oblique rotations

Factor and component rotation Oblique rotations

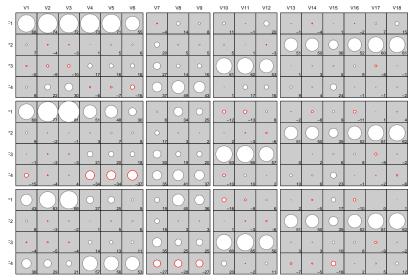
Oblique rotation methods

- Promax is the most widely used oblique rotation method
 - Does an initial varimax rotation
 - Transform $\lambda_{ij} \rightarrow \lambda_{ij}^3$: makes loadings closer to 0/1
 - Oblique, least squares rotation to Λ^3 as target
- Other oblique rotation methods include the Crawford-Ferguson family, minimizing a general function with a single parameter, c:

 $f_{CF} = (1 - c) \times \text{row complexity} + c \times \text{col complexity}$

- Rotation name С
- 0 CF-Quartimax
- CF-Varimax 1/p
- k/2p CF-Equamax
- **CF-Factor parsimony**
- Many people try several rotation methods to see which gives most interpretable result.

Recklitis etal. (2006) "Factor structure of the Brief Symptom Inventory-18 in Adult Survivors of Childhood Cancer" - Comparison of Promax, CF-Varimax and CF-Parsimax solutions



Factor and component rotation Oblique rotations

Example: Holzinger & Swineford 9 abilities data Promax rotation

For other rotations, use the OUTSTAT= data set from a prior run as input - no need to re-compute the factor solution.

title2 'Promax rotation'; proc factor data=FACT method=ML NFact=3 round flag=.3 rotate=promax;

- run;
 - round give a more readable display of loadings
 - flag= prints *s just a guide for noticing "large" absolute values

Factor and component rotation Oblique rotation

Example: Holzinger & Swineford 9 abilities data Promax rotation

Target matrix defined from initial Varimax:

The FACTOR Procedure Rotation Method: Promax (power = 3)

Target Matrix for Procrustean Transformation

		Factor1		Factor2		Factor3	
x1	Visual Perception	3		2		83	*
X2	Cubes	1		0		100	*
X4	Lozenges	3		0		92	*
X6	Paragraph Comprehen	100	*	0		2	
X7	Sentence Completion	98	*	1		1	
X9	Word Meaning	97	*	0		3	
X10	Addition	1		100	*	0	
X12	Counting Dots	0		93	*	3	
X13	Straight-curved Caps	2		40	*	29	

Factor and component rotation Oblique rotations

Factor and component rotation Oblique rotations

Factor pattern:

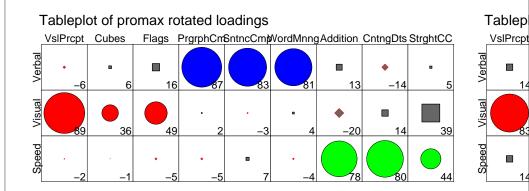
Rotated Factor	Pattern	(Standardized	Regression	Coefficients)
		Easter1	Eastor?	Eactor?

		Factori		Factorz		Factors	
x1	Visual Perception	5		7		64	*
X2	Cubes	0		-6		53	*
X4	Lozenges	7		-7		68	*
X6	Paragraph Comprehen	86	*	-3		5	
X7	Sentence Completion	82	*	9		-3	
X9	Word Meaning	80	*	-4		8	
X10	Addition	13		80	*	-23	
X12	Counting Dots	-14		79	*	15	
X13	Straight-curved Caps	6		45	*	39	*

Factor correlations:

	Inter-Factor Correlations					
	Factor1		Factor2		Factor3	
Factor1	100	*	27		45	*
Factor2	27		100	*	38	*
Factor3	45	*	38	*	100	*

Tableplots: promax vs. varimax



Factor and component rotation Oblique rotations

Example: Holzinger & Swineford 9 abilities data Promax rotation

Factor structure:

	Factor Stru	cture (Co	orre	elations)			
		Factor1		Factor2		Factor3	
X1	Visual Perception	36	*	32	*	69	*
X2	Cubes	22		14		51	*
X4	Lozenges	36	*	21		68	*
X6	Paragraph Comprehen	87	*	21		42	*
X7	Sentence Completion	83	*	30		38	*
X9	Word Meaning	82	*	20		42	*
X10	Addition	24		75	*	13	
X12	Counting Dots	14		81	*	38	*
X13	Straight-curved Caps	35	*	61	*	59	*

• Shows correlations between variables and factors (taking factor correlations into account)

Factor and component rotation Procrustes rotations

Procrustes (target) rotations

- Before CFA, the way to "test" a specific hypothesis for the factor pattern was by rotation to a "target matrix."
- Procrustes rotation: Named for the Greek inn-keeper with one size bed

Factor and component rotation Procrustes rotations	Factor and component rotation Procrustes rotations
Procrustes (target) rotations	Example: Holzinger & Swineford 9 abilities data Procrustes rotation
 Before CFA, the way to "test" a specific hypothesis for the factor pattern was by rotation to a "target matrix." We can specify a hypothesis by a matrix of 1s and 0s, e.g., 	<pre>Enter the hypothesized target as a matrix of 0/1 (transposed): title2 'Procrustes rotation: 3 non-overlapping factors'; data hypothesis; input _name_ X1 X2 X4 X6 X7 X9 X10 X12 X13; list; datalines; FACTOR1 1 1 1 0 0 0 0 0 0 0 FACTOR2 0 0 0 1 1 1 0 0 0 FACTOR3 0 0 0 0 0 1 1 1 1; proc factor data=FACT rotate=procrustes target=hypothesis round flag=.3 PLOT; run;</pre>
Factor and component rotation Procrustes rotations	Factor and component rotation Procrustes rotations

Factor and component rotation Procrustes rotations

Example: Holzinger & Swineford 9 abilities data

Procrustes rotation

Target matrix: Factor pattern:

	Target Matrix for	Procrustean	Transformat	ion
		Factor1	Factor2	Factor3
X1	Visual Perception	100 *	0	0
X2	Cubes	100 *	0	0
X4	Lozenges	100 *	0	0
X6	Paragraph Comprehen	0	100 *	0
X7	Sentence Completion	0	100 *	0
X9	Word Meaning	0	100 *	0
X10	Addition	0	0	100 *
X12	Counting Dots	0	0	100 *
X13	Straight-curved Caps	0	0	100 *

Factor pattern:

Rotated Factor Pattern (Standardized Regression Coefficients)

		Factor1		Factor2		Factor3	
X1	Visual Perception	61	*	3		15	
X2	Cubes	52	*	-2		0	
X4	Lozenges	66	*	5		1	
X6	Paragraph Comprehen	3		87	*	-3	
X7	Sentence Completion	-5		83	*	9	
X9	Word Meaning	7		80	*	-4	
X10	Addition	-29		13		80 *	*
X12	Counting Dots	9		-16		83 *	*
X13	Straight-curved Caps	34	*	4		51 *	*

Factor correlations:

	Inter-Factor Correlations					
	Factor1		Factor2		Factor3	
Factor1	100	*	48	*	34	*
Factor2	48	*	100	*	31	*
Factor3	34	*	31	*	100	*

Factors are slightly more correlated here than in Promax

Factor Scores

 Factor scores represent the values of individual cases on the latent factor variables.

Factor Scores

- Uses: classification, cluster analysis, regression, etc. based on results of factor analysis.
- Factor scores (unlike component scores) cannot be computed exactly, but must be estimated.
 - Reason: The unique factors (by definition) are uncorrelated with everything else.
 - Therefore a linear combination of the variables cannot be perfectly correlated with any common factor.
- Most factor analysis programs (PROC FACTOR, LISREL, EQS) estimate factor score coefficients by multiple regression, using the usual formula for standardized regression coefficients:

$$\boldsymbol{B} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y} \Rightarrow \boldsymbol{B}_{p \times k} = (\boldsymbol{R}_{xx})^{-1}\boldsymbol{R}_{x\xi} = \boldsymbol{R}_{xx}^{-1}\widehat{\boldsymbol{\lambda}}\widehat{\boldsymbol{\Phi}}$$

Factor Scores

• The actual factor scores are obtained by applying the factor score coefficients to the standardized scores, $z_{ij} = (x_{ij} - \bar{x}_j)/s_j$.

$$\boldsymbol{W}_{n \times k} = \boldsymbol{Z}_{n \times p} \boldsymbol{B}_{p \times k}$$

- In SAS, use PROC SCORE: PROC FACTOR DATA=mydata SCORE /* produce factor scores */ OUTSTAT=fact;
 - PROC SCORE DATA=mydata
 SCORE=fact /* uses _TYPE_='SCORE' obs */
 OUT=myscores;

Summary: Part 2

Exploratory Factor Analysis

• Observed variables: linear regression on common (latent) factors

Summary

- $\bullet \rightarrow$ factors "account for" correlations (partial linear independence)
- Decomposes variance into communality and uniqueness

Factor Estimation

- Assume uncorrelated factor initially ($\Phi = I$)
- Initial estimates of communialities $\rightarrow \hat{\Psi}_0$
- Minimize a function of the difference between \bm{S} and $\widehat{\bm{\Sigma}}=\widehat{\Lambda}\widehat{\Lambda}^{\mathsf{T}}+\widehat{\Psi}$
- ML method gives significance test of *k* factors

Factor Rotation

- Needed to interpret based on size of loadings simple structure
- Analytic methods min/max of some criterion for simple struture

Visualizations

- Plots of (rotated) factor loadings: 2D, 3D, scatterplot matrix
- Tableplots: visualize patterns in tables of loadings

Factor Scores