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Vectors & Matrices
with statistical applications

Michael Friendly |y 3 s | 3
Psychology 6140

Volumn = det{n v w)

Why learn matrix algebra?

Simple way to express linear
combinations of variables and
general solutions of equations.

Linear statistical models
(regression, anova) generalize to
any # of predictors & responses.

Strong relations between algebra,
geometry & statistical concepts

I
ax=aX, +a,X, +a;X,

{ Anxnxnxl = bn><1 = X= Ailb

yAi :ﬁo +ﬂlx1+ﬁzxz
y =XB
Y =XB

univariate response

multivariate response

Goal: a reading knowledge of
matrix expressions to aid in
understanding statistical
concepts.

Brief history of linear algebra

* |deas first arose in relation to solving systems of
equations in astronomy & geodesy (1700s)

= Determining the “shape of the earth” from measures
of latitude and arc length (3 eqgn., 3 unknowns)

= Calculating the orbits of planets, e.g., Saturn, Jupiter
(6 egn., 6 unknowns)

Arc lengths measured from
Dunkirk to Barcelona

Equaterial diameter 3
12,756 km

Pierre-Louis Moreau de Maupertius
“The man who flattened the earth”
(Portrait from 1739)

His crowning glory was a journey to
Lapland, making measures of the
length of 1° of latitude, and showing
that they were smaller near the
poles than at the equator.




Brief history of linear algebra

* By ~ 1800, Gauss developed “Gaussian
elimination” to solve such problems, and “least
squares” to deal with fallible measurements

* Still required proper notation & algebra (A )

= 1848: J.J. Sylvester introduced “matrix” (Latin: womb)
for array of numbers, with a single symbol.

= 1855: Arthur Cayley defined matrix multiplication in
relation to systems of equations

= 1858: Cayley develops algebra, including inverse, At

* Now, there was a general notation for solving m
equations in n unknowns!

Vectors & matrices

* A matrix is a rectangular array of numbers,
with r rows and ¢ columns.

12 3] (a, a, |
A;,=]15 0 &, 38y :(au)’ljj,zzrc

7 -1 a Ay
. {1 7 —3}2(% b,, bls]
> (2 4 6 b,, b,, b,
1 2
Transpose operation: A' = AT = [ay], Z'3><2 = 7 4
interchanges rows and columns 3 6 .

Vectors & matrices

* A vector is just a one column matrix

* Sometimes written in transposed (row) form to save
space.

6 Vie=Y'1a=(6 7 12)
y3><1: 7
12 Yeua=(6 7 12)

All of these forms define y as a 3 x 1 column vector

Special vectors & matrices

1 Square matrix: A, , , : same # rows/cols
. |1 _ :
unitvector: 1 =j =|. 2 10 9 7 1
:'L Az ZL_]_ 9} B,;=|3 3 5
n 11 9 4]
0
Symmetric matrix: A = AT, or a;=a;
zero vector: g _ 0 g 7 1
B 2. 10
0, Aez=1g 9 Boa = 1 ii

contrast vectors: Zci =0 Diagonal matrix: a; =0 fori #
ci=(11 -1 -1)

c,=(3 -1 -1 -1




Special vectors & matrices

Identity matrix: diagonal w/ a; = 1

L _[ro 1
2210 1) l,=|0
0

Unit matrix: all a; = 1

Why: acts like 1 in multiplication—
Al=A

o = O
= O O

Why: convenient way to sum
vectors & matrices

11 aj=3 a
J3><2 =11 :[js ]3]
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Operations on vectors & matrices

Addition & subtraction: add corresponding elements. Must have same shape

a +b a,+b, a,+b,
a3xl+b3Xl:(ai+bi): az"'bz A3><2+BS><2:|:aij+bij:|: a21+b21 a22"'bzz
a; +b, a; +by  a, +by
A [102]  [53 B EC R ap_|5 1
14 6 14 4 18 10 1o 2

Properties: same as for scalars— order doesn’t matter

e Commutative: A+B =B +A

vector geometry

Zero matrix: all a; =0

Why: acts like 0 in addition—

A+0=A
A-B=0—-A=B

0 0O
0 .=
2x3 |:0 0 0:|

10

» Associative: A+(B+C)=(A+B)+C
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Operations on vectors & matrices

Scalar multiplication: multiply each element by a scalar.

kay cay; ... Ca,
ka,,=(ka)=| : CAn.=[ca]=| .

ca,, - ca,,

Vector geometry
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Partitioned matrices

Def" : A partitioned matrix has its rows & columns divided into sub-matrices

Same matrix, just
with names for
the sub-matrices

\Aﬂ{? 8}

10 11 ) .
Makes it easier to

express sets of

o variables
Statistical examples:

R(X]:[RXXRXY} (Xiy) (X y){X'XX'y} s




Partitioned matrices

Addition and subtraction is defined for partitioned matrices if all
submatrices in corresponding positions are of the same size and shape

1 2:3 2 2:0 3 4 :3

456 + 1071} =15 55

7 8.9 0 2.-1 7 10 :8
Symbolically,

|:A11 A12:| + |:Bll BlZ:| — |:All +Bll A12 +BlZ:|
AZl A22 A21 +BZl A22 +822

14

Vector & matrix multiplication

Vector x Yector / %,

a’'x = (a @«

Cinner produd) KR e (8, Re=04) (ﬁ‘>
L '2!\

= Q% + Qg ¢+ Qpy

—_-'ﬁ a; % som of prodvets of

1> corre‘?““d'hf] elemeni:

ea- 2 N[/Z
40

vB: A% = X'

Note that inner dimensions must match! 15

Vector & matrix multiplication

specia) cases -
o gy -t it od
i,
® 1y =1t (3) CYrgarg =Y
il =4l
© a0 =0 (1 3 5)(;’) _ o
Q;g = 0 } 0

16

Geometry of vector products

« In a geometric representation, the
scalar product relates to the angle
between 2 vectors:

a’b =[|al|-||b]||-cos®

» Orthogonal vectors (6=90) have
the property thata’'b =0

~— ||a]| cos §

1

ab=(1 1 1)|-2|=0
1

X'y

e Correlation (=cos 0) = —————
IRSIRIA

17




Matrix product

The matrix product, A B, is defined only if
the # of columns of A = # of rows of B

Then, A and B are conformable for multiplication

pedld] R

3 (3x3) (3x3 2x3)
(ax L.LJ &_Aﬁc confornithle

18

Matrix product

Algebraic view:

L=l r
matriy amatny ok rA = [flc.;] kzl.-C
§s= [Lkﬁl ]"l
Thew
A - = [C’*-i_.( [a, '1]
rxc.Uf-S rAs (aws Oid-ohui,,
pf&l_"

Each element, ¢; is the vector product of row i of Atimes col j of B

19

Matrix product

* —
Arc Bcs - Crs
Diagram
view
3; b;
Vector ai’ bJ = C”
formula
by,
Scalar a. a sz _ N ab = c
formula (il i2 aTC) : - ik™kj T ij
. k=1

b. 20

Matrix product: examples

es. A ??' E 8
:cf Y z) zo (zmo ovue)g(,‘a 7)
- f l - Q3 0+0 +0- - J
4 9 =l 03 8+0+0 0+0-3 8 3/
2{3:3:3/“1 Lx 1
EAAD- ¢ 9
As#
o 3! 2\ (? (2
_l 1)\ 3 4)

21




Visualizing matrix product

* Right-mult: linear combination of columns

multiplying A by B is the linear combination of the columns of A
using coefficients from B

X = + ‘ b + | C =
L
1oy 2 a ary + by + ez
xa yz z | x| b| = a2 +by2+exm
T3 Yya 3 o ary + bys + cz3

Right multiplying by a matrix is
just more of the same.

Each column of the result is a
different linear combination of
the columns of A

ary +byz + czz dra+eya + fz2 gra+ hyz +izm
ary +bys +cxa drs+eys+ faz gra+ hys +iz

(a.ﬁ +hyr+en dri+eyp + fr g+ hp +1:1)

22 23
Visualizing matrix product Why multiply like this?
. . . To express systems of linear equations:
e Left-mult; linear combination of rows Presssy |
mgltiplying _A_by B is the linear combination of the rows of B ST+ 1—2’.;_, - 4 P 3 Z] ( 1‘\ __( 4)
using coefficients from A x — 3%,5 0 | -3 'xz,_/ 9)
+ A Z - _.l?
xm=b =01 1] 2@ w2
+
T qeneval: ‘
moewsesd A g o b
a b c)x|x2 1 | = lax bx cr3  ai In cys az bz + cz: —
( ) xi ij :i) (ax1 +bra+ cxs ayi+by2 +cys az + bz + c) n U‘ﬂkmw (Mth) isd )
Solution: X = A1 b when AL exists (m=n, egn. independent)
From: http://eli.thegreenplace.net/2015/visualizing-matrix-multiplication-as-a-linear-combination 24 25




Properties of matrix multiplication

1. Associative A(BC)=(AB)C

2. Distributive (A+B)C=AC+BC
AB+C)=AB+AC

3. NOT commutative
(in general)

AB =BA

4. ldentity A l=1 A=A

12 3)10) (123
4 56J0 1) (456 ,

Properties of matrix multiplication

5. Zero —
Arxc 0c><s - Orxs
6. Transpose of a (AB) = BT AT
product

(AB---2)" = 7" ...BT AT

All of these properties are analogous to ordinary
(scalar) algebra, except for (3) and (6). Why?

27

Matrix powers

For a square matrix, A ¢ p
A=A A
A=A A A=A%’A et forA

o BP0 Y

In applications (e.g., MAP II-1), matrix powers provide a simple way to
compute paths through a network, represented by (0/1) values in a
matrix.

28

Matrix powers

Square roots too:

If BZ = A, then B is also the square root of A, i.e., B = A

eg. (4 O _(4 0)(4 0)_(16 0)_
o0 3) o 3)lo 3) o 9/
i
so, 16 0\ (4 0)_5_pw
0 9 0 3

The idea of the “square root of a matrix” was fundamental in the
development of factor analysis, where Thurstone defined factors as

R | - [a] (A

29




Vectors & matrices in regression

The general linear regression model,

=B, + B X, +5,X, +'“+,5'pxip + &,

has the following form in terms of vectors and matrices:

Y, 1 Xy oo Xy |[ By &
Y, 1 Xy oo Xy || B &,
. = . . . . o]
Y, _l Xog oo Xop | b, &,

or,

ynxl = an(p+l)B(p+1)><1 + £n><1 30

Matrix products in regression

All calculations are based on the sums and sums of squares from the following
matrix products (shown for p=1 predictor):

wy- ql,%:,.__q,)(g;) - 24

1]

A

in2

We can represent these all
with partitioned matrices:

31

Linear combinations of vectors

Given: vectors X4, X,, X, ... (Same length)

A linear combination is a weighted sum of the
form

a{x1}+b[x2}+c[x3J a, b, c: scalars

e.d., 3 X, +2X, =7 X5

Why: linear models use linear combinations:

9 = ﬂlxl + ﬂzxz + ﬂsxs

32

Linear combinations of vectors

Simple example:

3 / o
Tf zl':(’); ‘;EL-(z)J zss{’)
thew 39+ 2%, -72;
"
(o

< 3(3Jeal)-7(0) =

\

another
1 veclow

33




Linear independence

* A setof vectors, X4, X,, ... X, IS linearly
dependent if:

1. One x; can be expressed as a linear combination of
the others; or, equivalently:

2. There are some scalars, a,, a,, ... a, , not all zero,
such that 0
a; X, + aX,+...+ ax,=0=|°
0
Otherwise, the vectors are linearly independent.

Why: linear independence — idea of rank of a matrix, #

of degrees of freedom "

Linear independence: example

gt
2 i
4 s . 3 Zurg, When does this arise?
10 i A 3z
X = 8 4 2o * You include such
5 Te) z0 composite measures

1S 5 35 * Ipsatized scores:
divide all by the total
* Sample size (N) < #

%, %, Y art fihwlj dgem\o,i‘ of variables (p)

(@ sme Yz = 2% Y%

Consequences:
(D smt 2% +%~-% =Q Most analyses wil
fail, give errors, etc.
X% 3 provides no New wormetion net provided
bl} %\ % ﬂ-l't?aJ;' ("93 s MMJ

Gvem L $%2)
35

Rank of a matrix

The idea of rank of a matrix (or set of vectors) is a fundamental idea in matrix
algebra and statistical applications.

* Def: rank( A ) = r (A ) = # of linearly independent rows (or columns) of A , .
* Properties:

« # linearly independent rows = # linearly independent columns

er (A)<min(r, c)—rank never greater than smaller dimension

*r (A B)=min[ r(A), r(B) ] — rank of product = smaller of separate ranks

» Geometric idea: rank = # of dimensions (of a vector space)
* Statistical idea: rank = degrees of freedom

= # of linearly independent variables

36

Rank and Dimensionality of Vector Spaces

Row space of a matrix: vector space spanned by rows
Column space of a matrix: vector space spanned by columns

Row space
X1

X2
1 1 Y1 2 (1,1)
Atml = _1 0 y2 L
2 —1/s o

The rows of A define 3 vectors
in 2-space, a plane. The
columns define 2 vectors in
3-space-- also a plane. Hence,
rank(A) = 2.

37




Rank and Dimensionality of Vector Spaces

rank(A) Row/Col space
0 point
1 line
2 plane
3 volume
4+ hypervolume
x4 X2
I 1
Aﬂ-:) = _]- O
2 -1

38

Matrix inverse: A*

Inverse of a number:

* In ordinary arithmetic, division (inverse of
multiplication) is essential for solving equations

4x=8 — x=8/4=2

* Equally we can regard this is multiplying both
sides by the inverse of the constant

4x =8 - (£J4x=(£J8 - X = 2
4 4

39

Matrix inverse: A*

Inverse of a matrix:

* Division is not defined for matrices, but most square matrices
have a matrix inverse, A, that plays a similar role in solving
equations.

* The inverse of an n X n matrix, A, is defined as a matrix A1
such that its product with A gives the identity matrix:

A A'1:A'1A:I(nxn)
<s. 4 O Z
D=(0 3) o Vs)
becovse
03 o )

40

Matrix inverse: basic properties

* If an inverse, Al exists, it is unique

* No inverse exists if A .., = 0 (i.e., r(A)=0)
or, in general, if r((A) <n
= — A is ‘singular’
= — det(A) = |A| =

* Ordinary inverse defined only for square,
non-singular matrices

= Can also define a ‘generalized inverse,” A7,
suchthat AATA=AandA"AA =A

41




Matrix inverse: 2 x 2

The inverse of a 2 x 2 matrix is easy to calculate:
a b ) b 1[d -b
A= > A _—
c d “ad- bc a| |All-c a
A 3 2 4 Z 1 4 -2
-1 4 T 4x3- 1><(2)l 3 T1401 3

L [3 2] 1[4 2] 1[14 o0
AA™ = = == =1
-1 4| 14/1 3] 14|/0 14

\ \2\/'3 /
/ 69 ‘

e.g.,

Note:

No inverse if |A| =ad-bc =0, e.g., A
42

Properties of matrix inverse

o A exids # i ongque i€
C-chu are al equvaléwt)

@ [Al¥0
(5) A i non-simgolay
(Q_) Al Tows (Cds) of A Qre hneéw-H w\dqu:i:

2 TV BT sia TT=T
WY =A  sa B)R) =T
) =(A-D(AD= 1
A =AY

43

Properties of matrix inverse

Swmee (A'@(_'B-‘ﬂ) )
= A'B.R-‘A-l =AA =T

Yd,
:( 'fdt . =
o] % y;n

In general, to show or verify that a matrix K is the inverse of matrix L,

showthat K L =L K = |

3. (A‘gj‘ = E:lA-l

4. T D= (“' )

-
¥aw 4,40 #e- D

44

Determinants

For any square ma}-‘ixJ A

d&(ﬁ) | A\ = @ scalar fonchion
ot Q‘q
yRYA x2
lA\ . au = @uQyz2 — Qi Q2
0.2! sz\ % ‘\43 A e]w
ot + {-'fcm ead fou ¥ col

2 8

45




Determinants

3 X 3 matrix:

» Copy first 2 cols to the right
* Multiply diagonals

e Add / subtract

e + 0+ o+
= aei + bfg + cdh - ceg - afh - bdi

eg. xz" < 451 243
.3 I
4\z><3 - 4<7_ =4 +3+80 — 1o ~12~-1}
VA7 = 93-46=H7
122 331 S94
4+ o+

46

Determinants: cofactors

* General method: expand by cofactors of a given
row or column

= Minor of a; : M = determinant of submatrix removing
the ith row and jth column of A.

= Cofactor of g; : C; = (-1)™) M; (signs alternate)

det(4d)=a,C, +a,C,+-a,C,

i1l 2782 inin

" Forrowi :

= For col j: det(A ) a,C,+a,C, +-+a,C

niTnj

a12><-]_x |\/|12
For a ) ) ] )
* [@I ] : ‘15 11 0x-1x(-22+12) =0

47

Determinants: cofactors

Expand by row 1. det( ) a,C +a,Cp +a,C

1 8

['F_* l@ﬂ—‘ [?

+(1)‘6 11‘_(0” 1.5 11‘+( d‘)‘ 1.5 6

=1(11—-48) — 4(—12+15)= —-37+42=| 5

49

Determinants: geometry

2D: det() = area of parallelogram

b
c d

det[u v] :detrl

}:ad—bc d

3D: det() = volume

(What happens if u, v, w
are linearly dependent?)

o Vohunn = det{n v w)
° w

nD: det() = hyper-volume

Correlation matrices: In general: O<det(R,,,)<1

det( 1 rle —1- rlzz Singular Uncorrelated, R=I
12 1 50




Geometry: 2 x 2

2 X 2 matrices can be visualized by drawing their row (or column) vectors.
This illustrates the determinant as the area of the parallelogram

2 0 31
D= D=4 A= | Al=10
0 2 2 4

| dal{A) is the area of &S row vechors

a2,

det{D) deliA)

Diagonal matrix General matrix Singular matrix 51

Geometry: Inverse

The inverse of a 2 x 2 matrix can be visualized by drawing its row vectors in
the same plot. This shows that:

* The shape of Alis a 90° rotation of the shape of A.

» Alis small in the directions where A is large; det(A1)= 1/det(A)

» The vector aZ is at right angles to a, and at is at right angles to a,

NSIET S
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R Matrix functions

* Basic matrix functions are provided in base R:
= matrix(), c(Q), rbind(), cbind(), tQ, %*%, [,]
= diag(), det(), solve(), crossprod()

* The matl1b package provides some more:

= Rank: R(), trace: tr(), length: len()
= Inverse: inv()

= Many more for linear algebra and vector diagrams

53

Summary

* Matrices & vectors: shorthand notation
= Matrix: 2-way table; vector: 1-way collection of #s
= Algebra:
¢ Addition, subtraction: like ordinary arithmetic
* Multiplication: a’ x = linear combination; A x = set of them
= Use: represent alinear model:y =X B + ¢
* |nverse: Matrix “division”
= Solve linear equations: Ax =b - x=A1lb
= statistical models: inverse of covariance matrix — std.errors
* Determinant: “size” of a square matrix
= | A| =0 - “singular,” no inverse, can’t solve
= Rank =# linearly independent rows, cols, equations
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