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Vectors & Matrices
with statistical applications

Michael Friendly
Psychology 6140
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Why learn matrix algebra?
• Simple way to express linear 

combinations of variables and 
general solutions of equations.

• Linear statistical models 
(regression, anova) generalize to 
any # of predictors & responses.

• Strong relations between algebra, 
geometry & statistical concepts
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Goal: a reading knowledge of 
matrix expressions to aid in 
understanding statistical 
concepts.

univariate response

multivariate response

3

Brief history of linear algebra

• Ideas first arose in relation to solving systems of 
equations in astronomy & geodesy (1700s)

Determining the “shape of the earth” from measures 
of latitude and arc length (3 eqn., 3 unknowns)
Calculating the orbits of planets, e.g., Saturn, Jupiter 
(6 eqn., 6 unknowns)

Arc lengths measured from 
Dunkirk to Barcelona 4

Pierre-Louis Moreau de Maupertius

“The man who flattened the earth”

(Portrait from 1739)

His crowning glory was a journey to 
Lapland, making measures of the 
length of 1o of latitude, and showing 
that they were smaller near the 
poles than at the equator.
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Brief history of linear algebra
• By ~ 1800, Gauss developed “Gaussian 

elimination” to solve such problems, and “least 
squares” to deal with fallible measurements

• Still required proper notation & algebra (A m x n)
1848: J.J. Sylvester introduced “matrix” (Latin: womb) 
for array of numbers, with a single symbol.
1855: Arthur Cayley defined matrix multiplication in 
relation to systems of equations
1858: Cayley develops algebra, including inverse, A-1

• Now, there was a general notation for solving m
equations in n unknowns!
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Vectors & matrices

• A matrix is a rectangular array of numbers, 
with r rows and c columns.
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Vectors & matrices

• A vector is just a one column matrix
• Sometimes written in transposed (row) form to save 

space.
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All of these forms define y as a 3 x 1 column vector
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Special vectors & matrices

unit vector:

1
1

1

n n

n

1 j

zero vector:

0
0

0

n

n

0

contrast vectors: 0i

n

c

1 1 1 1 1c

2 3 1 1 1c

Square matrix: An x n : same # rows/cols

Symmetric matrix: A = AT, or aij=aji
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Diagonal matrix: aij = 0 for i j

3 3

4 0 0
0 2 0
0 0 6

D2 2

3 0
0 1

D



10

Special vectors & matrices

2 2

1 0
0 1

I
3 3

1 0 0
0 1 0
0 0 1

I

Identity matrix: diagonal w/ aii = 1

Unit matrix: all aij = 1

3 2 3 3

1 1
1 1
1 1

J j j

Zero matrix: all aij = 0

2 3

0 0 0
0 0 0

0

Why: acts like 1 in multiplication–

     A I = A

Why: convenient way to sum 
vectors & matrices
   aTj = i

Why: acts like 0 in addition—
   A + 0 = A
   A - B = 0 
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Operations on vectors & matrices

Addition & subtraction: add corresponding elements. Must have same shape

1 1
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a b
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A B
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Properties: same as for scalars– order doesn’t matter

• Commutative:  A + B = B + A

• Associative:  A + (B + C) = (A + B) + C

x
y

vector geometry

x
y

vector geometry
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Operations on vectors & matrices
Scalar multiplication: multiply each element by a scalar.
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Vector geometry
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Vector geometry
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Partitioned matrices

Statistical examples:

X X X y
X y X y

y X y y
XX XY

YX YY

R Rx
R Ry

R

Defn : A partitioned matrix has its rows & columns divided into sub-matrices

11 12
4 3

21 22

1 2 3
4 5 6
7 8 9

10 11 12

A A
A

A A

21

7 8
10 11

A

Same matrix, just 
with names for 
the sub-matrices

Makes it easier to 
express sets of 
variables
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Partitioned matrices
Addition and subtraction is defined for partitioned matrices if all 
submatrices in corresponding positions are of the same size and shape

2 2 0 3 4 3
   

1 2 3
4 5 6
7 8 9

 1 0 1     5 5 5
0 2 1 7 10 8

Symbolically,

       11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

A A B B A B A B
A A B B A B A B
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Vector & matrix multiplication

Note that inner dimensions must match!
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Vector & matrix multiplication
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Geometry of vector products
• In a geometric representation, the 
scalar product relates to the angle
between 2 vectors:

|| || || || cosa b a b

• Orthogonal vectors ( =90) have 
the property that b = 0

1
1 1 1 2 0

1
a b

• Correlation (= cos ) = || || || ||
x y

x y
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Matrix product
The matrix product, A B, is defined only if 

the # of columns of A = # of rows of B

Then, A and B are conformable for multiplication
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Matrix product
Algebraic view:

Each element, cij is the vector product of row i of A times col j of B

Matrix product
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     Arc      *        Bcs           =           Crs

        ai
’                       bj             =             cij

ai
’ bj cij
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2
1 2

1
         

j

j
i i ic ik k i

k
j j

cj

c

b

c
b

a a a a b

b

Diagram 
view

Vector 
formula

Scalar 
formula
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Matrix product: examples

A

A

B

B



Visualizing matrix product

• Right-mult: linear combination of columns

22

multiplying A by B is the linear combination of  the columns of A 
using coefficients from B
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Right multiplying by a matrix is 
just more of the same.

Each column of the result is a 
different linear combination of 
the columns of A

Visualizing matrix product

• Left-mult: linear combination of rows
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multiplying A by B is the linear combination of the rows of B 
using coefficients from A

From: http://eli.thegreenplace.net/2015/visualizing-matrix-multiplication-as-a-linear-combination 25

Why multiply like this?
To express systems of linear equations:

Solution:  x = A-1 b when A-1 exists (m=n, eqn. independent)
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Properties of matrix multiplication

1. Associative

2. Distributive

3. NOT commutative 
(in general)

4. Identity

( ) ( )A BC AB C

( )A B C AC BC
( )A B C AB AC

AB BA

c c c r r cr r
I IA A A

1 2 3 1 0 1 2 3
4 5 6 0 1 4 5 6 27

Properties of matrix multiplication

All of these properties are analogous to ordinary 
(scalar) algebra, except for (3) and (6). Why?

5. Zero

6. Transpose of a 
product

      r c c s r s0A 0

   ( )   T T TBB AA

    ( )    T T T TAB Z Z B A
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Matrix powers

In applications (e.g., MAP II-1), matrix powers provide a simple way to 
compute paths through a network, represented by (0/1) values in a 
matrix.

For a square matrix, A (n x n) :
2A A A
3 2  A AA A A A

2 1 2 1 2 7 10
3 4 3 4 15

1 2
3 4 22

e.g.,

etc, for Ap
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Matrix powers

The idea of the “square root of a matrix” was fundamental in the 
development of factor analysis, where Thurstone defined factors as

R ’

Square roots too:

    If B2 = A, then B is also the square root of A, i.e., B = A1/2

24 0 4 0 4 0 16 0
0 3 0 3 0 3 0 9

A

1/2
1/216 0 4 0

0 9 0 3
B A

e.g.,

so,
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Vectors & matrices in regression
The general linear regression model,

0 1 1 2 2i i i p ip iy X X X
has the following form in terms of vectors and matrices:

11 1 01 1

21 2 12 2

1

1
1

1

p

p

n npn np

x xy
x xy

x xy

1 ( 1) ( 1) 1 1n n p p ny X
or,
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Matrix products in regression
All calculations are based on the sums and sums of squares from the following 
matrix products (shown for p=1 predictor):

We can represent these all 
with partitioned matrices:

X X X y
X y X y

y X y y
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Linear combinations of vectors

• Given: vectors x1, x2, x3, ... (same length)
• A linear combination is a weighted sum of the 

form

• e.g.,        3 x1 + 2 x2 – 7 x3• Why: linear models use linear combinations: 

1 2 3           a, b, c: scalarsa b cx x x

1 1 2 2 3 3ˆ x x xy
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Linear combinations of vectors
Simple example:
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Linear independence

• A set of vectors, x1, x2, … xn is linearly
dependent if:

1. One xi can be expressed as a linear combination of 
the others; or, equivalently:

2. There are some scalars, a1, a2, … an , not all zero, 
such that

a1x1 + a2x2 +…+ anxn = 0 =

Otherwise, the vectors are linearly independent.
Why: linear independence rank of a matrix, # 

of degrees of freedom

0
0

0
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Linear independence: example

When does this arise?

• You include such 
composite measures

• Ipsatized scores: 
divide all by the total

• Sample size (N) < # 
of variables (p)

Consequences:
Most analyses will 
fail, give errors, etc.
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Rank of a matrix
The idea of rank of a matrix (or set of vectors) is a fundamental idea in matrix 
algebra and statistical applications.

• Def: rank( A ) r ( A ) = # of linearly independent rows (or columns) of A r x c

• Properties:

• # linearly independent rows = # linearly independent columns

• r ( A ) – rank never greater than smaller dimension

• r ( A B ) = min[ r(A), r(B) ] – rank of product = smaller of separate ranks

• Geometric idea: rank = # of dimensions (of a vector space)

• Statistical idea: rank = degrees of freedom

                                      = # of linearly independent variables 

37
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Matrix inverse: A-1

Inverse of a number:
• In ordinary arithmetic, division (inverse of 

multiplication) is essential for solving equations

• Equally we can regard this is multiplying both 
sides by the inverse of the constant
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1 1  8    8   2
4

4
4

4x xx

Matrix inverse: A-1

Inverse of a matrix:
• Division is not defined for matrices, but most square matrices 

have a matrix inverse, A-1, that plays a similar role in solving 
equations.

• The inverse of an n x n matrix, A, is defined as a matrix A-1

such that its product with A gives the identity matrix:

                 A  A-1 = A-1 A = I (n x n)
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Matrix inverse: basic properties

• If an inverse, A-1 exists, it is unique
• No inverse exists if A n x n = 0 (i.e., r(A)=0) 

or, in general, if r(A) < n
A is ‘singular’
det(A) = |A| = 0

• Ordinary inverse defined only for square, 
non-singular matrices

Can also define a ‘generalized inverse,’ A
such that A A A = A and A A A A
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1 1

4 3 1 ( 2)

4 2 4 21
1 3 14 1 3

A

Matrix inverse: 2 x 2
The inverse of a 2 x 2 matrix is easy to calculate:

3 2
1 4

A

1 4 2 14 01 1
14 1 3

3 2
1 4 14 0 14

AA I

1 1 1
| |

a d db b b
c c cad cd a ab A

A A

e.g.,

Note:

No inverse if  |A| = ad – bc = 0, e.g.,
2 3
6 9

A
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Properties of matrix inverse

44

Properties of matrix inverse

In general, to show or verify that a matrix K is the inverse of matrix L,
show that K L = L K = I

45

Determinants
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Determinants
3 x 3 matrix:
• Copy first 2 cols to the right
• Multiply diagonals
• Add / subtract
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Determinants: cofactors

• General method: expand by cofactors of a given 
row or column

Minor of aij : Mij = determinant of submatrix removing 
the ith row and jth column of A.
Cofactor of aij : Cij = (-1)(i+j) Mij (signs alternate)

For row i :

For col j: 
M12

0 × -1 × (-22+12) = 0For a12:
a12 × -1× M12
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Determinants: cofactors
Expand by row 1:

11

1 8
6 11

M

M12 M13
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Determinants: geometry
2D: det() = area of parallelogram

det det
a b

ad bc
c d

u v

3D: det() = volume

nD: det() = hyper-volume

Correlation matrices:

12 2
12

12

1
det 1

1
r

r
r

In general: 0 det( ) 1p pR

Singular Uncorrelated, R=I

(What happens if u, v, w
are linearly dependent?)



Geometry: 2 x 2
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2 0
| | 4

0 2
D D

3 1
| | 10

2 4
A A

1 2
| | 0

2 4
B B

2 x 2 matrices can be visualized by drawing their row (or column) vectors.
This illustrates the determinant as the area of the parallelogram

Diagonal matrix General matrix Singular matrix

Geometry: Inverse
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The inverse of a 2 x 2 matrix can be visualized by drawing its row vectors in 
the same plot.  This shows that:
• The shape of A-1 is a 90o rotation of the shape of A.
• A-1 is small in the directions where A is large; det(A-1)= 1/det(A)
• The vector a2 is at right angles to a1 and a1 is at right angles to a2

12 1 2 1
1 2 1 2

1
3

A A 12 1 1 1
1 1 1 2

A A

Matrix functions

• Basic matrix functions are provided in base R:
matrix(), c(), rbind(), cbind(), t(), %*%, [,]
diag(), det(), solve(), crossprod()

• The matlib package provides some more:
Rank: R(), trace: tr(), length: len()
Inverse: inv()
Many more for linear algebra and vector diagrams
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Summary

• Matrices & vectors: shorthand notation
Matrix: 2-way table; vector: 1-way collection of #s
Algebra:

• Addition, subtraction: like ordinary arithmetic
• Multiplication: a’ x = linear combination; A x = set of them

Use: represent a linear model: y = X +

• Inverse: Matrix “division”
Solve linear equations: A x = b x = A-1 b

std.errors

• Determinant: “size” of a square matrix
| A
Rank = # linearly independent rows, cols, equations


