
Robust statistical inference & 
bootstrapping

(What to do when you’re not feeling Normal?)

Michael Friendly
Psychology 6140
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Classical statistical inference

Relies on distributional assumptions
GLM: i ~ N (0, 2)
generalized LMs: allow other assumed distributions (e.g., Poisson for 
counts, binomial for binary data)

bi ~ N( i, 2(X’X)-1
ii) but only under assumptions

In some cases, all we have: asymptotic results
CFA: minimize F(S, )
(n-1) F min ~ 2 as n . 
Cold comfort with small n.

Robust methods & bootstrapping substitute computation for 
assumptions

Good news: These are general ideas, that apply to all statistical 
methods.
Bad news: sometimes requires specialized software (but SAS, R, SPSS 
are catching up)
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Two kinds of robustness

Robustness of validity (Type 1 error)
Is the p-value for a test approx. correct over a range of data 
distributions?
OLS: OK– p-values not seriously affected by (moderate) non-
normality
More complex models (e.g., CFA): How are tests affected? 

Robustness of efficiency (Type 2 error)
Is power high over a wide range of distributions?
OLS not robust in this sense– efficiency seriously degraded for 
heavy-tailed distributions (decrease in power)
Related idea: resistance--- lack of influence of small # of outliers
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Trivial example: measures of location

Sample: x = -2, -1, 0, 1, 2
Mean = median = 0

What happens as we add one new observation, x0, over 
range of all values?

Different estimators 
can be considered 
in terms of their 
influence function

A given estimate can be 
made robust by 
restricting influence of a 
given observation
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Weighted least squares

One useful method for correcting a variety of 
problems in linear models is to estimate 
parameters by weighted least squares, i.e., 
minimize

for some specified weights, w1, w2, …, wn

This idea provides the basis for a large class of 
robust methods
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Weighted least squares

WLS solution:
Let W = diag(w1, w2, …, wn)
then 

minimizes

1( )b X'WX X'Wy

2) ( )' ( )( i iewQ y Xb W y Xb

SAS: proc reg;
weight w;
model y = x1 x2 x3;

lm(y~x1+x2+x3,

weights=w)

R:
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M-estimators for robust linear models

Idea: generalize OLS and WLS by minimizing a 
symmetric function of the residuals

where the function, (ei) can reduce influence of outliers
OLS: (ei) = ei
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L1 estimation: (ei) = |ei| (least absolute value)
Bi-weight:
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M-estimators: objective functions

Function to be 
optimized
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M-estimators: influence functions
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Finding M-estimates by IRLS

Minimize Q = (ei) = (yi – xi’b) by WLS, using the 
weight function

then

where W = diag ( w(e1), … w(en) )

But: weights, w(ei) and coefficients b depend on each 
other.  Therefore:

Iterate: compute new weights, new coefficients
Until: coefficients don’t change (IRLS)

1( )b X'WX X'Wy
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A graph of different weight 
functions shows that we 
might want a function like 
the biweight that gives 
smaller weights as residuals 
get large
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Modern robust methods

Robust methods in statistics is a growth topic
Good for univariate models; multivariate models still need work

New classes feature high breakdown-bound –proportion 
of unusual cases before estimates are affected

M estimators not resistant to leverage points 
MM, LTS, S methods– high breakdown 

MM

OLS

M

M estimator can’t 
resist the cluster of 4 
red giants

LTS: Least trimmed squares–
minimize SS of smallest h% of 
residuals (50 h 75)
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Inference & hypothesis tests

How to calculate robust standard errors?
Asymptotic var-cov matrix of the M-estimator, b, is given 
by

For comparison, with OLS: (ei)=ei, ’(ei)=1, so this 
gives

CIs & hypothesis tests: z = bj / ASE(bj)
Caveat: Asymptotic theory depends on large n
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Robust tools

robust macro (http://datavis.ca/sasmac/)
Fits models with proc GLM, REG or LOGISTIC
Weight functions: BISQUARE, HUBER, LAV, OLS

PROC ROBUSTREG
Fits all general linear models (ANOVA, regression)
Calculates asymptotic standard errors: CIs & hypothesis tests
Provides M-estimation, MM-estimation, LTS (least trimmed squares) 
and other methods
These have high-breakdown property– can tolerate a large proportion of 
outliers

R: lots of robust stuff– See CRAN Robust Task View
rlm() in MASS package: M-estimation
lmrob() in robustbase package: highly robust and highly efficient MM 
estimator (95% efficiency for normal errors)
robmlm() in heplots package: multivariate LMs
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Example: Duncan occupational prestige

%include data(duncan); 
title 'Robust Regression - Duncan data'; 
%robust(data=duncan,

response=prestige,
model=income educ, 
id=job,
proc=reg,
function=bisquare,
out=resids);

proc plot data=resids; 
plot _weight_ * case = job; run; 

NB: The %robust macro is now deprecated, in favor of PROC ROBUSTREG, but I retain 
these examples to illustrate the details.
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Example: Duncan occupational prestige

Robust Regression - Duncan data
Iteration history and parameter estimates 

ITER _RMSE_  INTERCEP  INCOME    EDUC  MAXDIF

1  13.369   -6.0647 0.5987  0.5458  0.9443 
2   8.871   -7.6649 0.7213  0.4754  0.1580 
3   8.951   -7.6916 0.7704  0.4383  0.1427 
4   8.644   -7.6731 0.7966  0.4209  0.0637 
5   8.496   -7.6112 0.8104  0.4115  0.0440

Note how coefficients for income and education change
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Example: Duncan occupational prestige

Residuals, fitted values and weights 
JOB      PRESTIGE _FIT_  _WEIGHT_  _RESID_  _HAT_

Accountant   82   78.024  0.9784    3.975   0.0596 
Chemist      90   79.645  0.8582   10.354   0.0523 
Minister     87   43.975 0.0000   43.025   0.0000
Professor    93   82.526 0.8551   10.474   0.0668 
Dentist      90   98.373  0.9061   -8.373   0.0930 
Reporter     52   82.488  0.1311  -30.488   0.0099 
Civil Eng.   88   86.128 0.9952    1.871   0.0696 
Undertaker   57   56.878  0.9999    0.122   0.0619 
Lawyer       89   94.308  0.9617   -5.308   0.0889 
Physician    97   93.897 0.9868    3.103   0.0889 
PS Teacher   73   68.736 0.9752    4.264   0.1085 
RR Conductor 38   67.971 0.1471  -29.971   0.0557
...        ..      ...
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Example: fuel consumption data

%include data(fuel);
title 'Bisquare Robust Regression - Fuel data';
%robust(data=fuel,

response=fuel,
model=tax drivers road inc,
id=state,
proc=reg,
out=resids);

proc gplot data=resids;
plot  _weight_ * _resid_;
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Example: fuel consumption data

Bisquare Robust Regression - Fuel data                    
Iteration history and parameter estimates 

iter _RMSE_  Intercept     tax    drivers         road     inc    _maxdif_
1    66.306   377.291 -34.7901  1336.45  -.002425889  -0.066589   0.9957
2    48.214   437.749 -31.2176  1154.88  -.001636757  -0.065316   0.3940
3    43.741   470.093 -28.2648  1059.45  -.001200214  -0.066819   0.1861
4    41.463   485.838 -25.4150  1002.13  -.000636108  -0.069252   0.1098
5    40.631   489.507 -23.2760   975.41 -.000139617  -0.071349   0.1405
6    37.879   490.060 -20.3267   942.66 0.000479679  -0.073647   0.1287
7    34.875   472.821 -16.8588   928.44 0.001175523  -0.075289   0.0806
8    34.172   455.703  -15.4570   934.60  0.001460715  -0.075185   0.0349 
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Example: fuel consumption data
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Example: proc robustreg

ods rtf file='robdunc0.rtf' style=journal;
ods graphics on;
proc robustreg data=duncan

plots=(ddplot(label=leverage) rdplot(label=leverage)) ;
model prestige = income educ / diagnostics itprint ;
id job;
output out=resids r=residual weight=weight outlier=outlier;
run;

ods graphics off;
ods rtf close;

Using ODS Graphics, a variety of useful plots are produced, including:

• ddplot: Leverage plot: robust distances vs. Mahalanobis distances for Xs

• rdplot: Influence plot: robust residuals vs. robust distances
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Example: proc robustreg

Parameter Estimates

Parameter DF Estimate
Standard 

Error
95% Confidence 

Limits Chi-Square Pr > ChiSq

Intercept 1 -7.4120 3.8733 -15.0036 0.1796 3.66 0.0557

income 1 0.7903 0.1085 0.5777 1.0030 53.06 <.0001

educ 1 0.4185 0.0891 0.2439 0.5931 22.07 <.0001

Scale 1 9.5553

Diagnostics

Obs job
Standardized 

Robust Residual Outlier

6 Minister 4.4647 *

9 Reporter -3.1344 *

16 RR Conductor -3.0227 *

The same 3 suspects are 
identified as outliers

CIs and hypothesis tests 
are based on Wald 2
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ddplot: Leverage plot: robust distances vs. Mahalanobis distances for Xs
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rdplot: Influence plot: robust residuals vs. robust distances
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R: rlm() and lmrob()
> library(car)
> data(Duncan)
> library(MASS)
> dunc.robust <- rlm(prestige ~ income+education, data=Duncan)
> summary(dunc.robust)

Call: rlm(formula = prestige ~ income + education, data = Duncan)
Coefficients:

Value  Std. Error t value
(Intercept) -7.111  3.881     -1.832 
income       0.701  0.109      6.452 
education    0.485  0.089      5.438 

Residual standard error: 9.89 on 42 degrees of freedom

> cbind(Duncan,dunc.robust$w)[dunc.robust$w < .5,]

type income education prestige dunc.robust$w
minister prof 21        84       87      0.344664
reporter   wc 67        87       52      0.441727

Which cases have small weights?
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Example: Robust ANOVA

An experiment was carried out to study the effects of two successive treatments 
(Treat1, Treat2) on the recovery time of mice with certain diseases. 

Sixteen mice were randomly assigned into four groups for the four different 
combinations of the treatments. 

The recovery times (time) were recorded (in hours) as shown in the following data 
set recover.

data recover;
input  Treat1 $ Treat2 $ time @@;

datalines;
0 0 20.2  0 0 23.9  0 0 21.9  0 0 42.4
1 0 27.2  1 0 34.0  1 0 27.4  1 0 28.5
0 1 25.9  0 1 34.5  0 1 25.1  0 1 34.2
1 1 35.0  1 1 33.9  1 1 38.3  1 1 39.9
;
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Source DF        Squares Mean Square   F Value  Pr > F

Model   3    209.9118750     69.9706250      1.86 0.1905
Error      12    451.9225000     37.6602083
Corrected Total  15    661.8343750

proc glm data=recover;
class Treat1 Treat2;
model time = Treat1 | Treat2;

run;

Source  DF    Type III SS Mean Square   F Value  Pr > F

Treat1   1     81.4506250   81.4506250 2.16   0.1671
Treat2    1    106.6056250   106.6056250 2.83   0.1183
Treat1*Treat2 1     21.8556250  21.8556250 0.58   0.4609

Standard ANOVA:

Resuts are disappointing!

Publish or perish?

PERISH!
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Wait … it’s time to plot the data!
Plot of means seems to show an interaction, maybe main effect of T2

Boxplot shows large variance in cell (0,0), but no outliers
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ods rtf file='robust-anova.rtf';
ods graphics on;
proc robustreg data=recover plot=histogram;

class Treat1 Treat2;
model time = Treat1 | Treat2 / diagnostics;
T1_T2: test Treat1*Treat2;
output out=robout r=resid sr=stdres;

run;
ods graphics off;
ods rtf close;

PROC ROBUSTREG to the rescue:

Robust versions of the F 
and Wald tests

Outlier and 
leverage 
diagnostics

Histogram of std. 
robust residuals
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Parameter Estimates

Standard   95% Confidence   Chi-
Parameter DF Estimate    Error       Limits    Square Pr > ChiSq

Intercept          1  36.7655   2.0489  32.7497  40.7814  321.98 <.0001
Treat1        0    1 -6.8307   2.8976 -12.5100  -1.1514 5.56     0.0184
Treat1        1  0   0.0000    .        .        .         .  .
Treat2        0    1 -7.6755   2.8976 -13.3548  -1.9962 7.02     0.0081
Treat2        1  0   0.0000    .        .        .         .  .
Treat1*Treat2 0 0  1  -0.2619   4.0979  -8.2936   7.7698    0.00     0.9490
Treat1*Treat2 0 1  0   0.0000    .        .    .         .  .
Treat1*Treat2 1 0  0   0.0000    .        .    .         .  .
Treat1*Treat2 1 1  0   0.0000    .        .    .         .  .
Scale     1   3.5346

Parameter estimates show that both treatment main effects are significant at the 
5% level:

Standardized
Robust

Obs Residual      Outlier

4          5.7722         *

Diagnostics:

Further investigation showed that the 
original value of 24.4 for the fourth 
observation was recorded incorrectly. 

• Who published?

• Who perished?
32

The histogram plot of standardized robust residuals clearly 
show this as an outlier
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Robust MLMs

Robust methods for univariate LMs are now well-
developed and implemented

proper SEs, CIs and hypothesis tests
Analogous methods for multivariate LMs are a current 
hot research topic
The heplots package now provides robmlm() for the 
fully general MLM (MANOVA, MMReg)

Uses simple M-estimator via IRLS
Weights: calculated from Mahalanobis D2, a robust covariance 
estimator and weight function, (D2)

Downside: SEs, p-values only approximate

2 1 2
robust( (ˆ ˆ) ) ~T

pD Y S YY Y
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Robust MLMs: Example

> pottery.mod <- lm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
> pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)

Observation weights overlaid HE plots

35

Bootstrapping

Classical statistical inference relies on
Distributional assumptions
Asymptotic results

Bootstrapping is a non-parametric approach to inference 
that substitutes computation for assumptions

Decorative bootstraps: we don’t need these

Functional bootstraps: help to pull you up from where you 
are, to where you want to be

bootstrap (v): help oneself, often through 
improvised means
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Bootstrapping

Can provide more accurate inferences when 
data is badly behaved or n is small
Can be applied when no sampling theory is 
available

Tests of equality of ratios (y/x)
fMRI studies: differences among patterns of brain 
activation
Joe Jackson: how did he hit in clutch situations?

Can be applied to complex data-collection plans 
(stratified/clustered samples)
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More general ideas: Resampling

The bootstrap is an example of the general idea of 
resampling from an original data set for statistical 
inference
Other examples:

Jackknife:  leave-one-out analysis
Cross-validation: choosing optimal model fitting parameters
Permutation tests: totally non-parametric

Uses:
Std errors, CIs with small samples
Subset selection in linear models (PROC GLMSELECT)
Dealing with missing data
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Classical statistical inference

Here, we rely on statistical theory (CLT) & assumptions (independence, 
normality, constant variance) to take us to the sampling distribution of the 
statistic of interest.
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Bootstrap

Population is to 
the sample

Sample is to the 
bootstrap sampleASPopulation is to

the sample
Sample is to the 
bootstrap sampleASPopulation is to 

the sample
Sample is to the 
bootstrap sampleAS

Key idea:
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Bootstrap: general method

Repeat b=1, …, B times (B > 200-1000+):
Generate random resample (w/ replacement)
The bootstrap sample must replicate conditions of original data
Calculate estimates of parameters, b*

Estimate standard errors as the standard deviation of *
over the B bootstrap samples

Calculate bootstrap CIs by finding the lower and upper 
( /2) percentiles of the bootstrap distributions
Other methods for calculating bootstrap CIs provide bias 
correction

1/2
* *

1
( ) / ( )1) (

B

boot b
b

SE B
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Bootstrap: trivial example

Test H0: H – W = 0 by bootstrap
2.75Y
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For this example, all of the possible 256 bootstrap 
samples of size n=4 can be enumerated
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Bootstrap sampling distribution

Bootstrap CI

2.5%2.5%

Sample mean: Y=2.75

CI: includes 0, so we 
cannot reject H0

More generally: we 
have an SE and CI 
that does not rely on 
assumptions or large 
N!
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Bootstrapping linear models

Random-X resampling
Regressors are treated as random
Select bootstrap samples from the data

Fixed-X resampling
Regressors treated as fixed: implies that 
model is correct
Select bootstrap samples from the residuals
Add resampled residuals to fitted values to 
give the bootstrap sample
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Bootstrapping the Duncan M-estimator

B=2000 bootstrap samples of size n=45 were generated randomly with 
replacement

M-estimates of the coefficients for Income and Education calculated for each

Bootstrap 
CI

Bootstrap 
CI
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%include data(duncan);
title 'Bootstrap OLS Regression - Duncan data';
*-- Macro to do one regression, called by %BOOT;
%macro reg(data=, out=);
proc reg noprint data=&data outest=&out(drop=prestige _rmse_);

model prestige = income educ;
%bystmt; *-- analyze BY _sample_;
run;

%mend;

%boot(data=duncan, random=123, samples=1000, analyze=reg);
%bootci(stat=income educ, method=pctl);

Bootstrapping: the boot macro

The boot macro can be used to do a bootstrap analysis of almost any statistical
method.  You need to write a macro to do the analysis for one sample. 

data = name of input data set
out = name of output data set containing statistics

%bootci requires ~1000 
for a 90% CI, more for 
greater confidence
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Obs _sample_    Intercept     income      educ

1        1 -5.7582    0.54098    0.58980
2        2 -8.3689    0.97551    0.27158
3        3 -9.5888    0.72040    0.46339
4        4 -4.5667    0.49814    0.60600
5        5 -7.8326    0.76440    0.42816
6        6 -4.1156    0.56472    0.50862
7        7 -6.2003    0.54978    0.59809

Approximate
Approximate  Lower

Observed    Bootstrap    Approximate  Standard   Confidence
Name     Statistic     Mean    Bias   Error     Limit

educ 0.54583      0.52897      -0.016865 0.13927        0.28973
income     0.59873     0.61985   0.021113 0.17253    0.23947  

Approximate
Upper           Method for

Bias-Corrected     Confidence    Confidence Confidence
Name        Statistic       Limit Level (%)        Interval

educ 0.56270         0.83566          95       Bootstrap Normal
income        0.57762         0.91577         95     Bootstrap Normal

Some of the 1000 bootstrap estimates

Partial output from the bootci macro
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title 'Bootstrap robust regression';
%macro robreg(data=, out=);

ods listing close;
proc robustreg data=&data  outest=&out(drop=prestige);

model prestige = income educ ;
%bystmt; *-- analyze BY _sample_;
run;

ods listing;
%mend;

%boot(data=duncan, random=123, samples=1000, stat=income educ,
analyze=robreg);

%bootci(stat=income educ, method=pctl);

Now, do the same for a robust regression:
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Approximate
Approximate  Lower

Observed    Bootstrap    Approximate  Standard   Confidence
Name     Statistic     Mean    Bias   Error     Limit

educ 0.41849      0.44085       0.022356 0.17181        0.05939
income     0.79035    0.76351      -0.026841       0.22326        0.37961

Approximate
Upper           Method for

Bias-Corrected     Confidence    Confidence Confidence
Name        Statistic       Limit Level (%)        Interval

educ 0.39613         0.73287          95       Bootstrap Normal
income        0.81719         1.25477         95     Bootstrap Normal

Minimum      Maximum         LABEL OF
Resampled Resampled Number of    FORMER

Name      Estimate   Estimate Resamples VARIABLE

educ -0.48286     0.98063        1000      Education
income      0.16942   1.74531 1000      Income

Partial output from the bootci macro

50

Graphs of the bootstrap distribution of M-estimates of for Income and 
Education

51

Compare with the bootstrap distribution of OLS estimates of for Income and 
Education

The CIs for robust regression are wider, but more realistic
52

Complex example: Bootstrapping a SEM

Data from the Canadian National Election 
Survey, 1977

Items: 4-point Likert scales
MBSA2: We should be more tolerant of people who choose to 
live according to their own standards 
MBSA7: Newer lifestyles are contributing to the breakdown of 
our society 
MBSA8: The world is always changing and we should adapt our 
view of moral behaviour to these changes 
MBSA9: This country would have many fewer problems if there 
were more emphasis on traditional family values 
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> str(CNES)
'data.frame':   1529 obs. of  4 variables:
$ MBSA2: Ord.factor w/ 4 levels "StronglyDisagree"<..: 4 3 3 4 3 3 2 3 2 3 ...
$ MBSA7: Ord.factor w/ 4 levels "StronglyDisagree"<..: 3 4 2 3 1 2 1 1 3 3 ...
$ MBSA8: Ord.factor w/ 4 levels "StronglyDisagree"<..: 2 1 2 1 3 3 2 2 1 3 ...
$ MBSA9: Ord.factor w/ 4 levels "StronglyDisagree"<..: 2 4 3 4 2 3 3 2 4 4 ...

> library(polycor)
> R.cnes <- hcor(CNES)
> R.cnes

MBSA2      MBSA7    MBSA8      MBSA9
MBSA2  1.0000000 -0.3017953  0.2820608 -0.2230010
MBSA7 -0.3017953  1.0000000 -0.3422176  0.5449886
MBSA8  0.2820608 -0.3422176  1.0000000 -0.3206524
MBSA9 -0.2230010  0.5449886 -0.3206524  1.0000000

The data:

Because the items are polytomous, we compute polychoric correlations:

However, this will cause problems for a SEM:

• Std errors of polytomous correlations are complex

• Std errors of the SEM analysis will be incorrect (Pearson cor. assumed)
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The model: One factor CFA

F

MBSA2

MBSA7

MBSA8

MBSA9

1

2

3

4

The sem package in R provides simple 
cfa() notation to specify the model:

1

2

3

4

> model.cnes <- 
cfa(reference.indicators=FALSE)
1: F: MBSA2, MBSA7, MBSA8, MBSA9
2:
Read 1 item
NOTE: adding 4 variances to the model
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> sem.cnes <- sem(model.cnes, R.cnes, N=1529)
> summary(sem.cnes)

Model Chisquare =  33.211   Df =  2 Pr(>Chisq) = 6.1407e-08
Chisquare (null model) =  984.33   Df =  6
Goodness-of-fit index =  0.98934
Adjusted goodness-of-fit index =  0.94668
RMSEA index =  0.10106   90% CI: (0.07261, 0.13261)
Bentler-Bonnett NFI =  0.96626
Tucker-Lewis NNFI =  0.9043
Bentler CFI =  0.9681
SRMR =  0.035365
BIC =  18.547 

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

lam1 -0.38933 0.028901 -13.471 0  MBSA2 <--- F    
lam2  0.77792 0.029357  26.498 0   MBSA7 <--- F    
lam3 -0.46868 0.028845 -16.248 0  MBSA8 <--- F    
lam4  0.68680 0.028409  24.176 0   MBSA9 <--- F    
the1  0.84842 0.032900   25.788 0    MBSA2 <--> MBSA2
the2  0.39485 0.034436   11.466 0    MBSA7 <--> MBSA7
the3  0.78033 0.031887   24.472 0    MBSA8 <--> MBSA8
the4  0.52831 0.030737   17.188 0    MBSA9 <--> MBSA9

Iterations =  12 

Fitting the model:

But: can we trust 
these results?

Seems to fit well

Asymptotic std 
errors are not to be 
trusted here
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> # Define a function to return correlations for a bootstrap sample 
> hcor <- function(data) hetcor(data, std.err=FALSE)$correlations
>
> boot.cnes <- bootSem(CNES, sem.cnes, R=100, cov=hcor)

> summary(boot.cnes, type="norm")
Call: boot.sem(data = CNES, model = sem.cnes, R = 100, cov = hcor)

Lower and upper limits are for the 95 percent norm confidence interval

Estimate          Bias  Std.Error Lower      Upper
lam1 -0.3893278  0.0017661057 0.03480571 -0.4593118 -0.3228759
lam2  0.7779153  0.0054905355 0.03456017  0.7046881  0.8401615
lam3 -0.4686838  0.0078697011 0.03627866 -0.5476584 -0.4054486
lam4  0.6867992 -0.0015019493 0.02937082  0.6307354  0.7458669
the1  0.8484245  0.0001720356 0.02719461  0.7949520  0.9015530
the2  0.3948479 -0.0097552534 0.05425617  0.2982630  0.5109433
the3  0.7803349  0.0060123631 0.03360386  0.7084602  0.8401849
the4  0.5283057  0.0012078609 0.04055924  0.4476032  0.6065925
> # cf., standard errors to those computed by summary(sem.cnes)

Doing the bootstrap analysis:

~ 48 sec. to do 
R=100 samples
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Summary

Robust methods
General solutions to problems of “messy” data
Weighted analysis, using weights = f(residuals)
Iterative method: IRLS
Now get asymptotic std errors, robust tests, etc.
More exact methods now for univariate (G)LMs

Bootstrapping (resampling) methods
General solutions to problems of “messy” analysis
Generate sampling distribution from the data
Substitutes computation for assumptions


