

Robust statistical inference & bootstrapping (What to do when you're not feeling Normal?)

Michael Friendly Psychology 6140

Classical statistical inference

- Relies on distributional assumptions
 - GLM: ε_i ~ N (0, σ²)
 - generalized LMs: allow other assumed distributions (e.g., Poisson for counts, binomial for binary data)
 - $\rightarrow b_i \sim N(\beta_i, \sigma^2(X'X)^{-1}_{ii})$ but *only* under assumptions
- In some cases, all we have: asymptotic results
 - CFA: minimize F(S, Σ)
 - (*n*-1) $\mathsf{F}_{\min} \sim \chi^2 \text{ as } n \to \infty$.
 - Cold comfort with small n.
- Robust methods & bootstrapping substitute computation for assumptions
 - Good news: These are general ideas, that apply to all statistical methods.
 - Bad news: sometimes requires specialized software (but SAS, R, SPSS are catching up)

Two kinds of robustness

- Robustness of validity (Type 1 error)
 - Is the *p*-value for a test approx. correct over a range of data distributions?
 - OLS: OK- p-values not seriously affected by (moderate) nonnormality
 - More complex models (e.g., CFA): How are tests affected?
- Robustness of efficiency (Type 2 error)
 - Is power high over a wide range of distributions?
 - OLS not robust in this sense- efficiency seriously degraded for heavy-tailed distributions (decrease in power)
 - Related idea: resistance--- lack of influence of small # of outliers

Trivial example: measures of location

- Sample: x = -2, -1, 0, 1, 2
 - Mean = median = 0
- What happens as we add one new observation, x₀, over range of all values?

A given estimate can be made **robust** by restricting influence of a given observation

Weighted least squares

• One useful method for correcting a variety of problems in linear models is to estimate parameters by *weighted least squares*, i.e., minimize $O(\mathbf{R}) = \sum w c^2$

 $Q(\boldsymbol{\beta}) = \sum w_i e_i^2$

for some **specified** weights, w₁, w₂, ..., w_n

 This idea provides the basis for a large class of robust methods

Weighted least squares

- WLS solution:
 - Let W = diag(w₁, w₂, ..., w_n)

proc reg;

weight w;

model y = x1 x2 x3;

then

$$\mathbf{b} = (\mathbf{X'WX})^{-1}\mathbf{X'Wy}$$

minimizes

$$Q(\boldsymbol{\beta}) = \sum w_i e_i^2 = (\mathbf{y} - \mathbf{X}\mathbf{b})' \mathbf{W}(\mathbf{y} - \mathbf{X}\mathbf{b})$$

SAS:

5

7

R: Im(y~x1+x2+x3, weights=w)

6

8

M-estimators for robust linear models

 Idea: generalize OLS and WLS by minimizing a symmetric function of the residuals

$$Q(e_i, \rho) = \sum \rho(e_i)$$

where the function, $\rho(e_i)$ can reduce influence of outliers

- OLS: $\rho(e_i) = e_i^2$
- L_1 estimation: $\rho(e_i) = |e_i|$ (least absolute value)
- Bi-weight:

$$\rho(\mathbf{e}_{i}) = \begin{cases} [1 - (\mathbf{e}_{i} / \mathbf{c})^{2}]^{2} & |\mathbf{e}_{i}| \leq \mathbf{c} \\ 1 & |\mathbf{e}_{i}| > \mathbf{c} \end{cases}$$

M-estimators: objective functions

M-estimators: influence functions

Finding M-estimates by IRLS

Modern robust methods

- Robust methods in statistics is a growth topic
 - Good for univariate models; multivariate models still need work
- New classes feature high breakdown-bound proportion of unusual cases before estimates are affected
 - M estimators not resistant to leverage points
 - MM, LTS, S methods- high breakdown

LTS: Least trimmed squaresminimize SS of smallest h% of residuals (50 $\leq h \leq$ 75)

Inference & hypothesis tests

- How to calculate robust standard errors?
- Asymptotic var-cov matrix of the M-estimator, b, is given by

$$Var(\mathbf{b})_{p \times p} = \frac{\sum [\psi(\mathbf{e}_i)]^2 / n}{\left[\sum \psi'(\mathbf{e}_i)\right]^2} (\mathbf{X}' \mathbf{X})^{-1}$$

For comparison, with OLS: $\psi(e_i)=e_i$, $\psi'(e_i)=1$, so this aives

$$\operatorname{Var}(\mathbf{b})_{p \times p} = \frac{SSE}{n} (\mathbf{X}'\mathbf{X})^{-1}$$

- Cls & hypothesis tests: z = b_i / ASE(b_i)
- Caveat: Asymptotic theory depends on large n

Robust tools

M estimator can't

red giants

- robust macro (http://datavis.ca/sasmac/)
 - Fits models with proc GLM, REG or LOGISTIC
 - Weight functions: BISQUARE, HUBER, LAV, OLS
- PROC ROBUSTREG
 - Fits all general linear models (ANOVA, regression)
 - Calculates asymptotic standard errors: CIs & hypothesis tests
 - Provides M-estimation, MM-estimation, LTS (least trimmed squares) and other methods
 - These have high-breakdown property- can tolerate a large proportion of outliers
- R: lots of robust stuff– See CRAN Robust Task View
 - rlm() in MASS package: M-estimation
 - lmrob() in robustbase package: highly robust and highly efficient MM estimator (95% efficiency for normal errors)
 - robmlm() in heplots package: multivariate LMs

Example: Duncan occupational prestige

```
%include data(duncan);
title 'Robust Regression - Duncan data';
%robust(data=duncan,
   response=prestige,
   model=income educ,
   id=job,
   proc=req,
   function=bisquare,
   out=resids);
proc plot data=resids;
   plot _weight_ * case = job; run;
```

NB: The %robust macro is now deprecated, in favor of PROC ROBUSTREG, but I retain these examples to illustrate the details.

Example: Duncan occupational prestige

Robust Regression - Duncan data									
Iteration history and parameter estimates									
ITER	_RMSE_	INTERCEP	INCOME	EDUC	MAXDIF				
1	13.369	-6.0647	0.5987	0.5458	0.9443				
2	8.871	-7.6649	0.7213	0.4754	0.1580				
3	8.951	-7.6916	0.7704	0.4383	0.1427				
4	8.644	-7.6731	0.7966	0.4209	0.0637				
5	8.496	-7.6112	0.8104	0.4115	0.0440				

Note how coefficients for income and education change

17

Example: Duncan occupational prestige

Residuals,	fitte	ed valu	es and w	eights	
JOB PRE	STIGE	_FIT_	_WEIGHT_	_RESID_	_HAT_
Accountant	82	78.024	0.9784	3.975	0.0596
Chemist	90	79.645	0.8582	10.354	0.0523
Minister	87	43.975	0.0000	43.025	0.0000
Professor	93	82.526	0.8551	10.474	0.0668
Dentist	90	98.373	0.9061	-8.373	0.0930
Reporter	52	82.488	0.1311	-30.488	0.0099
Civil Eng.	88	86.128	0.9952	1.871	0.0696
Undertaker	57	56.878	0.9999	0.122	0.0619
Lawyer	89	94.308	0.9617	-5.308	0.0889
Physician	97	93.897	0.9868	3.103	0.0889
PS Teacher	73	68.736	0.9752	4.264	0.1085
RR Conductor	38	67.971	0.1471	-29.971	0.0557

Example: fuel consumption data

%include data(fuel);

proc=reg,

out=resids);

proc gplot data=resids;

plot _weight_ * _resid_;

Example: fuel consumption data

Bisquare Robust Regression - Fuel data Iteration history and parameter estimates

iter	_RMSE_	Intercept	tax	drivers	road	inc	_maxdif_
1	66.306	377.291	-34.7901	1336.45	002425889	-0.066589	0.9957
2	48.214	437.749	-31.2176	1154.88	001636757	-0.065316	0.3940
3	43.741	470.093	-28.2648	1059.45	001200214	-0.066819	0.1861
4	41.463	485.838	-25.4150	1002.13	000636108	-0.069252	0.1098
5	40.631	489.507	-23.2760	975.41	000139617	-0.071349	0.1405
6	37.879	490.060	-20.3267	942.66	0.000479679	-0.073647	0.1287
7	34.875	472.821	-16.8588	928.44	0.001175523	-0.075289	0.0806
8	34.172	455.703	-15.4570	934.60	0.001460715	-0.075185	0.0349

Example: fuel consumption data

Example: proc robustreg

<pre>ods rtf file='robdunc0.rtf' style=journal;</pre>
ods graphics on;
proc robustreg data=duncan
<pre>plots=(ddplot(label=leverage) rdplot(label=leverage)) ;</pre>
<pre>model prestige = income educ / diagnostics itprint ;</pre>
id job;
<pre>output out=resids r=residual weight=weight outlier=outlier;</pre>
run;
ods graphics off;
ods rtf close;

Using ODS Graphics, a variety of useful plots are produced, including:

- ddplot: Leverage plot: robust distances vs. Mahalanobis distances for Xs
- rdplot: Influence plot: robust residuals vs. robust distances

22

Example: proc robustreg

Parameter Estimates										
Parameter	DF	Estimate	Standard Error	95% Cont Limi	95% Confidence Limits		Pr > ChiSq			
Intercept	1	-7.4120	3.8733	-15.0036	0.1796	3.66	0.0557			
income	1	0.7903	0.1085	0.5777	1.0030	53.06	<.0001			
educ	1	0.4185	0.0891	0.2439	0.5931	22.07	<.0001			
Scale	1	9.5553								

CIs and hypothesis tests are based on Wald χ^2

	Diagnostics							
Obs	job	Standardized Robust Residual	Outlier					
6	Minister	4.4647	*					
9	Reporter	-3.1344	*					
16	RR Conductor	-3.0227	*					

The same 3 suspects are identified as outliers

ddplot: Leverage plot: robust distances vs.	. Mahalanobis distances for Xs
---	--------------------------------

rdplot: Influence plot: robust residuals vs. robust distances

R: rlm() and lmrob()

> :	lil	bra	ry	(car)	
-----	-----	-----	----	-------	--

> data(Duncan)

> library(MASS)

> dunc.robust <- rlm(prestige ~ income+education, data=Duncan)</pre>

> summary(dunc.robust)

Call: rlm(formula = prestige ~ income + education, data = Duncan) Coefficients: Value Std. Error t value

(Intercept) -7.111 3.881 -1.832 income 0.701 0.109 6.452 education 0.485 0.089 5.438

Residual standard error: 9.89 on 42 degrees of freedom

Which cases have small weights?

> cbind(Duncan,dunc.robust\$w)[dunc.robust\$w < .5,]</pre>

	type	income	education	prestige	dunc.robust\$w
minister	prof	21	84	87	0.344664
reporter	WC	67	87	52	0.441727

Example: Robust ANOVA

An experiment was carried out to study the effects of two successive treatments (*Treat1*, *Treat2*) on the recovery time of mice with certain diseases.

Sixteen mice were randomly assigned into four groups for the four different combinations of the treatments.

The recovery times (*time*) were recorded (in hours) as shown in the following data set *recover*.

data recover;

	j	input	Τı	rea	atl \$	Tre	eat	:2 \$ t	im∈	e @)@;
da	ta	alines	;								
0	0	20.2	0	0	23.9	0	0	21.9	0	0	42.4
1	0	27.2	1	0	34.0	1	0	27.4	1	0	28.5
0	1	25.9	0	1	34.5	0	1	25.1	0	1	34.2
1	1	35.0	1	1	33.9	1	1	38.3	1	1	39.9
;											

Standard ANOVA:

<pre>proc glm data=recover;</pre>										
class Treat1	Treat2;									
model time =	Treat1	Treat2;								
run;										

Resuts are disappointing!

27

Source	DF	Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	3 12 15	209.9118750 411.9229050 601.9342779	69.9706250 6602083	1.86	0.1905
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Treat1	1	81.4506250	81.4506250	2.16	0.1671
Treat2	1	106.6056250	106.6056250	2.83	0.1183
Treat1*Treat2	1	21.8556250	21.8556250	0.58	0.4609

Publish or perish?

Wait ... it's time to plot the data!

- Plot of means seems to show an interaction, maybe main effect of T2
- Boxplot shows large variance in cell (0,0), but no outliers

PROC ROBUSTREG to the rescue:

Parameter estimates show that both treatment main effects are significant at the 5% level:

	Parameter Estimates							
Parameter		DF	Estimate	Standa: Error	rd 95% (Lit	Confidence mits	Chi- Square	Pr > ChiSq
Intercept		1	36.7655	2.0489	32.7497	40.7814	321.98	<.0001
Treat1	0	1	-6.8307	2.8976	-12.5100	-1.1514	5.56	0.0184
Treat1	1	0	0.0000					
Treat2	0	1	-7.6755	2.8976	-13.3548	-1.9962	7.02	0.0081
Treat2	1	0	0.0000					
Treat1*Treat2	0 () 1	-0.2619	4.0979	-8.2936	7.7698	0.00	0.9490
Treat1*Treat2	0 1	L 0	0.0000					
Treat1*Treat2	1 () ()	0.0000					
Treat1*Treat2	1 1	L 0	0.0000					
Scale		1	3.5346					

Diagnostics:

1 5 7700 *	Obs	Standardized Robust Residual	Outlier
т 5.//22	4	5.7722	*

Further investigation showed that the original value of 24.4 for the fourth observation was recorded incorrectly.

- Who published?
- Who perished?

31

The histogram plot of standardized robust residuals clearly show this as an outlier

Robust MLMs

- Robust methods for univariate LMs are now welldeveloped and implemented
 - \rightarrow proper SEs, CIs and hypothesis tests
- Analogous methods for multivariate LMs are a current hot research topic
- The heplots package now provides robmlm() for the fully general MLM (MANOVA, MMReg)
 - Uses simple M-estimator via IRLS
 - Weights: calculated from Mahalanobis D^{2,} a robust covariance estimator and weight function, ψ(D²)

 $D^2 = (\mathbf{Y} - \hat{\mathbf{Y}})^T \mathbf{S}_{\text{robust}}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}) \sim \chi_p^2$

Downside: SEs, p-values only approximate

33

Robust MLMs: Example

> pottery.mod <- lm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
> pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)</pre>

overlaid HE plots

Bootstrapping

- Classical statistical inference relies on
 - Distributional assumptions
 - Asymptotic results
- Bootstrapping is a non-parametric approach to inference that substitutes computation for assumptions

Functional bootstraps: help to pull you up from where you are, to where you want to be

bootstrap (v): help oneself, often through improvised means

Decorative bootstraps: we don't need these

Bootstrapping

- Can provide more accurate inferences when data is badly behaved or *n* is small
- Can be applied when no sampling theory is available
 - Tests of equality of ratios (y/x)
 - fMRI studies: differences among patterns of brain activation
 - Joe Jackson: how did he hit in clutch situations?
- Can be applied to complex data-collection plans (stratified/clustered samples)

35

More general ideas: Resampling

- The bootstrap is an example of the general idea of resampling from an original data set for statistical inference
- Other examples:
 - Jackknife: leave-one-out analysis
 - Cross-validation: choosing optimal model fitting parameters
 - Permutation tests: totally non-parametric
- Uses:
 - Std errors, CIs with small samples
 - Subset selection in linear models (PROC GLMSELECT)
 - Dealing with missing data

Classical statistical inference

Here, we rely on statistical theory (CLT) & assumptions (independence, normality, constant variance) to take us to the sampling distribution of the statistic of interest.

BootstrapBootstrapBootstrapBootstrapBootstrapBootstrapBootstrapBootstrapBootstrapBootstrapBootstrapBootstrapBootstrapColspan="2">BootstrapColspan="2">BootstrapColspan="2">BootstrapColspan="2">BootstrapColspan="2">BootstrapColspan="2">BootstrapColspan="2">BootstrapColspan="2">BootstrapColspan="2">BootstrapColspan="2">BootstrapColspan="2">BootstrapColspan="2">BootstrapColspan="2">BootstrapColspan="2">Bootstrap</t

Bootstrap: general method

- Repeat b=1, ..., B times (B > 200-1000+):
 - Generate random resample (w/ replacement)
 - The bootstrap sample must replicate conditions of original data
 - Calculate estimates of parameters, $\pmb{\theta}_{b}^{\star}$

37

 Estimate standard errors as the standard deviation of 0* over the B bootstrap samples

$$SE_{boot}(\mathbf{\Theta}) = \left(\sum_{b=1}^{B} \left(\mathbf{\Theta}_{b}^{*} - \overline{\mathbf{\Theta}}^{*}\right) / \left(B - 1\right)\right)^{1/2}$$

- Calculate bootstrap CIs by finding the lower and upper (α/2) percentiles of the bootstrap distributions
- Other methods for calculating bootstrap CIs provide bias correction

Bootstrap: trivial example

TABLE 16.1 Contrived "Sample" of Four Married Couples, Showing Husbands' and Wives' Incomes in Thousands of Dollars.

Observation	Husband's Income	Wife's Income	Difference Y _i
1	24	18	6
2	14	17	-3
3	40	35	5
4	44	41	3

 $\bar{Y} = 2.75$

41

Test H_0 : $\mu_H - \mu_W = 0$ by bootstrap

Bootstrap sampling distribution

For this example, all of the possible 256 bootstrap samples of size n=4 can be enumerated

TABLE 16.2 A Few of the 256 Bootstrap Samples for the Dataset [6, -3, 5, 3], and the Corresponding Bootstrap Means, \overline{Y}_{b}^{*}

Bootstrap Sample b	Y•	Y_{b2}^{\bullet}	Y.• 53	Y.	Y _b
1	6	6	6	6	6.00
2	6	6	6	-3	3.75
3	6	6	6	5	5.75
:	:				:
100	-3	5	6	3	2.75
101	-3	5	-3	6	1.25
:	:				:
255	-3	3	3	5	3.50
256	3	3	3	3	3.00

Bootstrapping linear models

- Random-X resampling
 - Regressors are treated as random
 - Select bootstrap samples from the data
- Fixed-X resampling
 - Regressors treated as fixed: implies that model is correct
 - Select bootstrap samples from the residuals
 - Add resampled residuals to fitted values to give the bootstrap sample

Bootstrapping the Duncan M-estimator

B=2000 bootstrap samples of size n=45 were generated randomly with replacement

M-estimates of the coefficients for Income and Education calculated for each

Some of the 1000 bootstrap estimates

Obs	_sample_	Intercept	income	educ
1	1	-5.7582	0.54098	0.58980
2	2	-8.3689	0.97551	0.27158
3	3	-9.5888	0.72040	0.46339
4	4	-4.5667	0.49814	0.60600
5		-7.8326	0.76440	0.42816
6	6	-4.1156	0.56472	0.50862
7	7	-6.2003	0.54978	0.59809

Partial output from the bootci macro

Name	Observed Statistic	Bootstrap Mean	Approx Bi	imate as	Approximate Standard Error	Approximate Lower Confidence Limit
educ income	0.54583 0.59873	0.52897 0.61985	-0.01 0.02	.6865 21113	0.13927 0.17253	0.28973 0.23947
Name educ income	Bias-Correct. Statistic 0.56270 0.57762	Appro: Upp ed Conf: Lin 0.8 0.9	cimate per idence nit 3566 1577	Confide Level 95 95	Meth nce Conf (%) Int Bootstr Bootstr	nod for Fidence Serval Tap Normal Tap Normal

Bootstrapping: the boot macro

The boot macro can be used to do a bootstrap analysis of almost any statistical method. You need to write a macro to do the analysis for one sample.

%include data(duncan); title 'Bootstrap OLS Regression - Duncan data'; *-- Macro to do one regression, called by %BOOT; %macro reg(data=, out=); proc reg noprint data=&data outest=&out(drop=prestige _rmse_); model prestige = income educ; %bystmt; *-- analyze BY _sample_; run; %mend;

%boot(data=duncan, random=123, samples=1000, analyze=reg); %bootci(stat=income educ, method=pctl);

data = name of input data set out = name of output data set containing statistics %bootci requires ~1000 for a 90% CI, more for greater confidence

Now, do the same for a robust regression:

45

Partial output from the bootci macro

Name	Observed Statistic	Bootstrap Mean	Approximate Bias	Approximate Standard Error	Approximate Lower Confidence Limit
educ income	0.41849 0.79035	0.44085 0.76351	0.022356 -0.026841	0.17181 0.22326	0.05939 0.37961
	Bias-Correc	Approx Upp ted Confi	imate Der dence Confi	Meth dence Conf	nod for Lidence
Name	Statisti	c Lim	it Leve	el (%) Int	cerval
educ income	0.39613 0.81719	0.73	287 9 477 9	95 Bootstr 95 Bootstr	rap Normal rap Normal
Name	Minimum Resampled Estimate	Maximum Resampled Estimate	Number of Resamples	LABEL OF FORMER VARIABLE	
educ income	-0.48286 0.16942	0.98063 1.74531	1000 1000	Education Income	

Graphs of the bootstrap distribution of M-estimates of for Income and Education

49

Compare with the bootstrap distribution of OLS estimates of for Income and Education

Complex example: Bootstrapping a SEM

- Data from the Canadian National Election Survey, 1977
 - Items: 4-point Likert scales
 - MBSA2: We should be more tolerant of people who choose to live according to their own standards
 - MBSA7: Newer lifestyles are contributing to the breakdown of our society
 - MBSA8: The world is always changing and we should adapt our view of moral behaviour to these changes
 - MBSA9: This country would have many fewer problems if there were more emphasis on traditional family values

The CIs for robust regression are wider, but more realistic

The data:

>	Str(CNE)	5)															
'data.frame': 1529 obs				of 4	variables:												
\$	MBSA2:	Ord.factor	w/	4	levels	"StronglyDisagree"<:	4	3	3	4	3	3	2	3	2	3	
\$	MBSA7:	Ord.factor	w/	4	levels	"StronglyDisagree"<:	3	4	2	3	1	2	1	1	3	3	
\$	MBSA8:	Ord.factor	w/	4	levels	"StronglyDisagree"<:	2	1	2	1	3	3	2	2	1	3	
\$	MBSA9:	Ord.factor	w/	4	levels	"StronglyDisagree"<:	2	4	3	4	2	3	3	2	4	4	

Because the items are polytomous, we compute polychoric correlations:

> library(polycor)									
> R.cnes <- hcor(CNES)									
> R.cnes									
MB	SA2 MBS	A7 MBSA8	MBSA9						
MBSA2 1.0000	000 -0.30179	53 0.2820608	-0.2230010						
MBSA7 -0.3017	953 1.00000	00 -0.3422176	0.5449886						
MBSA8 0.2820	608 -0.34221	76 1.0000000	-0.3206524						
MBSA9 -0.2230	010 0.54498	86 -0.3206524	1.000000						

However, this will cause problems for a SEM:

• Std errors of polytomous correlations are complex

• Std errors of the SEM analysis will be incorrect (Pearson cor. assumed)

53

Fitting the model:

<pre>> sem.cnes <- sem(model.cnes, R.cnes, N=1529) > summary(sem.cnes) Model Chisquare = 33.211 Df = 2 Pr(>Chisq) = 6.1407e-08</pre>		<pre>> # Define a function to return correlations for a bootstrap sample > hcor <- function(data) hetcor(data, std.err=FALSE)\$correlations > > boot.cnes <- bootSem(CNES, sem.cnes, R=100, cov=hcor)</pre>
Chisquare (null model) = 984.33 Df = 6 Goodness-of-fit index = 0.98934 Adjusted goodness-of-fit index = 0.94668 RMSEA index = 0.10106 90% CI: (0.07261, 0.13261)	Seems to fit well	~ 48 sec. to do R=100 samples
Bentler-Bonnett NFI = 0.96626 Tucker-Lewis NNFI = 0.9043 Bentler CFI = 0.9681 SRMR = 0.035365 BIC = 18.547	But: can we trust these results?	<pre>> summary(boot.cnes, type="norm") Call: boot.sem(data = CNES, model = sem.cnes, R = 100, cov = hcor) Lower and upper limits are for the 95 percent norm confidence interval</pre>
Parameter Estimates Estimate Std Error z value Pr(> z) lam1 -0.38933 0.028901 -13.471 0 MBSA2 < F	Asymptotic std errors are not to be trusted here	EstimateBiasStd.ErrorLowerUpperlam1 -0.38932780.00176610570.03480571-0.4593118-0.3228759lam2 0.77791530.00549053550.034560170.70468810.8401615lam3 -0.46868380.00786970110.03627866-0.5476584-0.4054486lam4 0.6867992-0.00150194930.029370820.63073540.7458669the1 0.84842450.00017203560.027194610.79495200.9015530the2 0.3948479-0.00975525340.054256170.29826300.5109433the3 0.78033490.00601236310.033603860.70846020.8401849the4 0.52830570.00120786090.040559240.44760320.6065925> # cf., standard errors to those computed by summary(sem.cnes)
Iterations = 12	56	

The model: One factor CFA

The sem package in R provides simple cfa() notation to specify the model:

> model.cnes <cfa(reference.indicators=FALSE)</pre>

1: F: MBSA2, MBSA7, MBSA8, MBSA9 2: Read 1 item NOTE: adding 4 variances to the model

Doing the bootstrap analysis:

Summary

Robust methods

- General solutions to problems of "messy" data
- Weighted analysis, using weights = f(residuals)
- Iterative method: IRLS
- Now get asymptotic std errors, robust tests, etc.
- More exact methods now for univariate (G)LMs
- Bootstrapping (resampling) methods
 - General solutions to problems of "messy" analysis
 - Generate sampling distribution from the data
 - Substitutes computation for assumptions