

Repeated measures: ANOVA and MANOVA

Psychology 6140

Repeated measures designs

Learning/longitudinal designs

Each subject measured on the same task over multiple occasions

Subj	Trial 1	Trial2	 Trial p
S1	12	16	 29
S2	15	18	 32

Or, there can also be 1 or more between-subject factors

Group	Subj	Trial 1	Trial 2	 Trial p
Control	S1	12	16	 29
Control	S2	15	18	 32
Treated	S3	21	26	 47
Treated	S4	19	24	 38

Repeated measures designs

Within-subject designs

Each subject tested on different tasks or under different conditions

		A1		A2		
	B1	B2	B3	B1	B2	B3
S1	14	18	10	21	28	27
S2	19	22	16	25	30	29

- NB: Scores for same S are dependent; scores for different Ss are independent
- Dependence must be taken into account in analysis Why ??

Repeated measures designs

Pre-post designs

Pre-test(s) – Treatment – Post-test(s)

- Each S serves as his/her own 'control'
 - Sometimes treated as ANCOVA (pretest as a covariate)
 - · Sometimes treated using 'gain' scores: post-pre, followup-pre
- There can also be multiple outcome measures at each occasion
 - E.g., depression, anxiety, self-worth x (pre, post)
 - These are "doubly-multivariate" designs

Why use repeated measures designs?

Control for individual differences

- When individuals vary widely, within-S comparisons may be more sensitive than between-S comparisons
- Between-S designs assume random assignment, making groups equivalent, but only on average, in the long run

Subject C	ontrol	Treatment
Subject 1	12	14
Subject 2	25	28
Subject 3	29	32
Subject 4	54	57

Diff between control & treatment is small, but every subject did better under treatment

Within-S test can be far more powerful

Each treatment

in each position

equally often

Why use repeated measure designs?

Change or learning – little choice!

- Vocabulary growth in 2nd language learning
- Student math achievement in grades 1-6
- Therapy outcomes over sessions

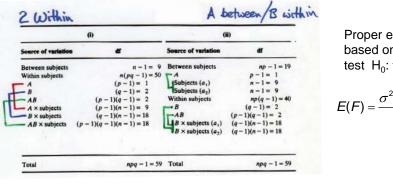
Special populations, few available subjects

- Eye-hand coordination in astronaut trainees
- Motor skill relearning in stroke patients
- Perception studies
 - · Many trials, many combinations of stimulus factors
 - Often n=2, 3, ... (authors)

Caveats: Carryover, order effects

- Effect of a given treatment may depend on what happened before
 - Practice effect better over time regardless of treatment
 - Fatigue worse over time
 - Priming A, then B different from B, then A
- Counter-balance: vary order over subjects
 - E.g., latin squares

 $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$

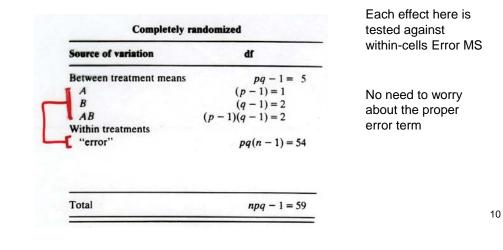

Analysis methods: Overview

- Univariate, repeated measures
 - Different error term for each effect
 - Strong assumptions (Σ: compound symmetry) for validity of within-S effects
- MANOVA
 - No additional assumptions (Σ: unstructured)
 - Test all hypotheses via GLH-- H₀: L B M = 0
- Mixed model
 - Most flexible (Σ: unstructured, CS, AR(1), …)
 - Allows missing data, drop-out, unequal time points
 - Also handles fixed and random factors

7

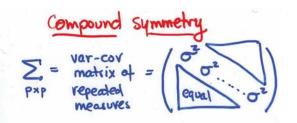
Univariate approach: Hypothesis tests

- Between-S effects: tested on sums (means) over repeated measures
- Different error terms for different effects


Proper error terms based on E(MS): To test H_0 : term=0

 $E(F) = \frac{\sigma_{error}^{2} + E(MS_{term})}{\sigma_{error}^{2}}$

9


Univariate approach

Contrast this with completely randomized, between-S design

Univariate approach: assumptions

- The validity of these tests depends on assumption about the pattern of correlations among the repeated measures
 - Only applies to within-S effects
 - Strongest form: compound symmetry

This implies:

- Equal variances
- Equal correlations
- Unlikely for longitudinal data
- Possible for split-plot designs

Univariate approach: assumptions

- Huynh-Feldt conditions (weaker): Sphericity
 - Variances and covariances may differ, as long as they can be expressed as:

$$\begin{cases} \sigma_i^2 = \alpha_i + \alpha_i + \tau \\ \sigma_{ij} = \alpha_i + \alpha_j \end{cases}$$

- True, iff (y₁-y₂), (y₂-y₃), ... (y_{p-1} y_p) have constant variance and are uncorrelated
- $\blacksquare \rightarrow$ Orthogonal contrasts of repeated measures, $\textbf{Y} \ \textbf{M},$ have

$$\mathbf{\Sigma}_{\mathsf{YM}} = \begin{pmatrix} \sigma^2 & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & \sigma^2 \end{pmatrix} = \sigma^2 \mathbf{I}$$

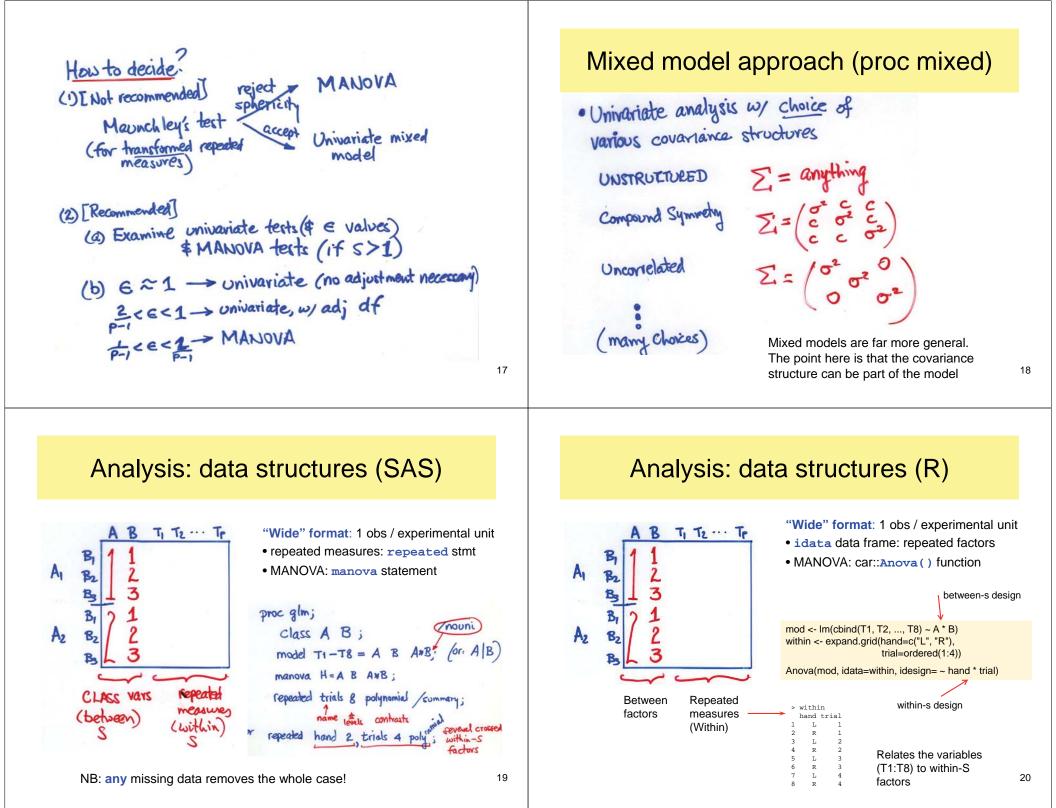
Spherical covariance (Maunchly's test)

Ways around these problems Effect of violations: - P-values biased downward	GG and HF corrections
(a) Univariate Fixups (a) Univariate Fixups Box: Null dist ^N of F [*] for within-S effects Can be approximated by adjusting df for test F [*] ~ F(€.df _H , €.df _E) where F-1 ≤ E≤1 1 worst case unitation • Box-test I withins F(p-1, (p-1)(n-1)) → F(1, N-1) footor Very conservative → low power 13	Key idea: degree of departure from sphericity can be assessed by estimating • Geiser - Green house • Hughn - Feldt • Hughn - Feldt • G-G estimate • more conservative • more conservative • more conservative • more liberal • good when \in is small $(\in < .5)$ [H-F conditions very wrong] • G-G estimate • more conservative • more liberal • good when \in is large $(\in \ge .5)$ [H-F approximately met] 14

GG & HF corrections

	-				ificance		-	-		
	((P)			V E				ŧ	
8		k	α:	0.10	0.05	0.01	α:	0.10	0.05	0.01
0.363	10	5	Г	0.096	0.052	0.012		0.105	0.060	0.018
	15	5		0.096	0.051	0.012		0.101	0.054	0.015
	20	5		0.098	0.054	0.012		0.101	0.033	0.015
0.752	10	5		0.080	0.034	0.007	1	0.102	0.055	0.013
	15	5		0.082	0.038	0.008	- 1	0.096	0.051	0.013
	20	5		0.094	0.044	0.011		0.102	0.051	0.014
0.831	10	5		0.078	0.036	0.006		0.101	0.053	0.013
	15	5		0.085	0.040	0.009		0.101	0.053	0.014
	20	5		0.091	0.046	0.080	1	0.103	0.053	0.012
1.00	10	5		0.071	0.029	0.003		0.095	0.046	0.009
	15	5		0.081	0.034	0.005	- 1	0.095	0.047	0.009
	20	5		0.093	0.046	0.006	_	0.105	0.050	0.010

E.9. 4/	<u>e</u> 1.0	Edfi, edfe 2,9	4.46	hberal
P=3	0.8	1.6,6.4	5.21	
	P-1 = 0.5	1,4	7.71	conservativ


Summary:

- Only matters when $\varepsilon \ll 1$
- HF better when $\varepsilon > 0.5$

GG better when ε < 0.5

MANOVA approach

- Between-S effects are tested in the same way
 - Same results as in univariate approach
- NO assumption required about structure of Σ
- Actual α error rates are approximately correct or are exact
- However, smallish sample sizes may have lower power
 - Power increases with ratio N/p
 - Univariate approach "buys power" with stronger assumptions
- Statistical tests: based on Wilks' Λ, HLT, Roy, …

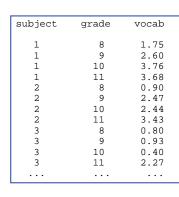
Analysis: data structures

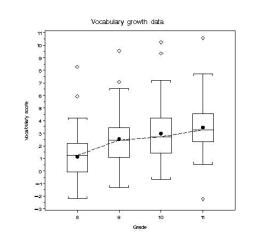
"Long" format: 1 obs / response

- Needed for plotting
- Allows missing data (use available)
- PROC GLM: can specify error terms
- PROC MIXED: can specify covariance structure
- R: aov(), like GLM, with error terms
- R: nmle package for mixed models

Example: Vocabulary growth study

- Vocabulary scores for a cohort of n=64 children were assessed in Grades 8-11 at the University of Chicago Lab. School
- Interest is focused on the form of vocabulary growth in this age range.
- e.g., does it decelerate, like physical growth?

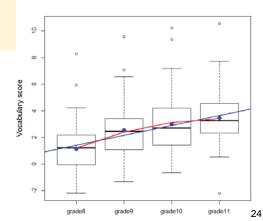

subject	grade8	grade9	grade10	grade11
1	1.75	2.60	3.76	3.68
2	0.90	2.47	2.44	3.43
3	0.80	0.93	0.40	2.27
4	2.42	4.15	4.56	4.21
5	-1.31	-1.31	-0.66	-2.22
6	-1.56	1.67	0.18	2.33
7	1.09	1.50	0.52	2.33
8	-1.92	1.03	0.50	3.04
9	-1.61	0.29	0.73	3.24
10	2.47	3.64	2.87	5.38
	• • •	• • •		•••


Data in wide format

22

For plotting, reshape to long format, e.g., to

plot vocab * grade

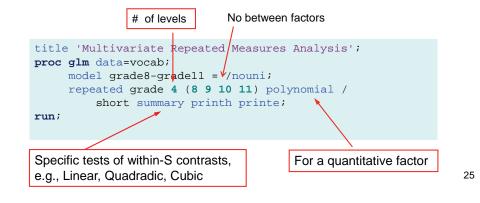


In R, no need to reshape for this (boxplot() can plot a data frame)

data(VocabGrowth, package="heplots") boxplot(VocabGrowth, ylab="Vocabulary score") means <- colMeans(VocabGrowth) points(1:4, means, pch=16, cex=1.5, col="blue") # plot linear trend

abline(Im(means ~ I(1:4)), col="blue", Iwd=2) # plot quadratic model

quad.mod <- Im(means ~ poly(I(1:4),2))
lines(1:4, predict(quad.mod), col="red")</pre>



23

Analysis: Univariate & MANOVA

PROC GLM:

- REPEATED statement gives both univariate and multivariate tests
- Can specify type of contrasts for repeated factor(s)

Univariate tests

		Repeated	Measures Analys	sis of Var:	iance		
		Univariate Test	s of Hypothese	s for With:	in Subject	t Effects	
						Adj I	Pr > F
Source	DF	Type III SS	Mean Square	F Value	Pr > F	G - G	H - F
grade	3	193.9456531	64.6485510	78.77	<.0001	<.0001	<.0001
Error(grade)	189	155.1194469	0.8207378				

Summary so far:

- Mean vocabulary scores differ significantly over grade
- Supported both by multivariate and univariate tests
- GG and HF ε indicate univariate assumptions are valid
- What about trends over grade?

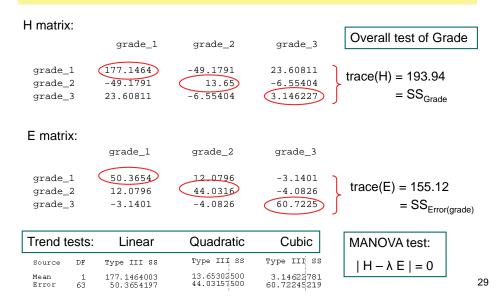
MANOVA output

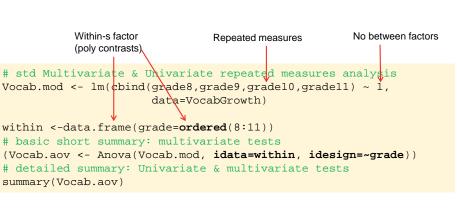
Sphericity:

		Sphericity Te Mauchly's	sts		
Variables	DF	Criterion	Chi-Square	Pr > ChiSq	
Transformed Variates Orthogonal Components	5 5	0.9030496 0.9030496	6.2942969 6.2942969	0.2786 0.2786	OK!

Overall grade effect:

for	Test Criteria a the Hypothesis = Type III SSCP E = Error S	of no grade Matrix for	Effect			
	S=1 M=0.	5 N=29.5				
Statistic	Value	F Value	Num DF	Den DF	Pr > F	
Wilks' Lambda	0.17422126	96.38	3	61	<.0001	
Pillai's Trace	0.82577874	96.38	3	61	<.0001	
Hotelling-Lawley Trace	4.73982748	96.38	3	61	<.0001	
Roy's Greatest Root	4.73982748	96.38	3	61	<.0001	

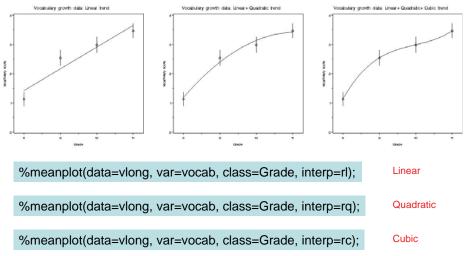

Univariate tests: Within-S contrasts


		asures Analysis ariance of Cont			
grade_N represents the r	th degre	e polynomial co	ntrast for grad	de	
Contrast Variable: grade	_1 Line	ear			
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Mean Error	1 63	177.1464003 50.3654197		221.59	<.0001
Contrast Variable: grade	_2 Qua	adratic			
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Mean Error	1 63	13.65302500 44.03157500		19.53	<.0001
Contrast Variable: grade	_3 Cul	oic			
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Mean Error	1 63	3.14622781 60.72245219		3.26	0.0756

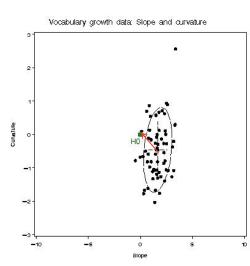
∇_{-}	Source	DF	Type III SS
<u> </u>	grade Error(grade)	3 189	193.9456531 155.1194469
contrasts	Diror (grade)	105	10011101100

Overall test of Grade

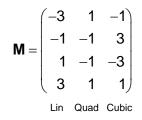
Where these tests come from: H & E matrices


Same analysis in R

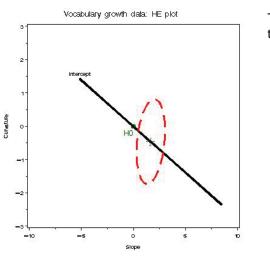
Multivariate test:


Type III Re	peat	ted Measure	es MANOVA	Tests:	Pillai	test statistic
	Df	test stat	approx F	num Df	den Df	Pr(>F)
(Intercept)	1	0.65289	118.498	1	63	4.115e-16 ***
grade	1	0.82578	96.376	3	61	< 2.2e-16 ***

30

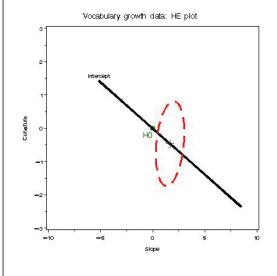

Visualizing results: meanplots

Visualizing results: HE plots



The MANOVA is based on analysis of **Y M**, where **M** gives within-S contrasts

The plot shows the slopes and curvatures for individuals, with a 68% data ellipse


Visualizing results: HE plots

The MANOVA test for Grade is testing $H_0: \mu_{Lin} = \mu_{Quad} = \mu_{Cubic} = 0$

The **H** matrix measures the distance between the actual means and (0, 0, 0)

The **E** matrix shows the covariation of slope, curvature and cubic effects

Visualizing results: HE plots

Interpretation:

H ellipse:

- mean slope > 0, mean curvature < 0
- $\ensuremath{\cdot}$ more variation against $\ensuremath{H_0}$ in slope than curvature

E ellipse: those with larger slopes tend to have slightly larger curvature --- flatter trajectories

Alternative analyses: polynomial regression

```
title 'Polynomial regression, ignoring subject';
proc glm data=vlong;
   model vocab = grade|grade|grade / ss1;
```

run;

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error	3 252	193.945653 1029.105122	64.648551 4.083750	15.83	<.0001
Corrected Total	255	1223.050775			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
grade grade*grade grade*grade*grade	1 1 1	177.1464003 13.6530250 3.1462278	177.1464003 13.6530250 3.1462278	43.38 3.34 0.77	<.0001 0.0687 0.3809

Alternative analyses: polynomial regression

title 'Polynomial regression, including subject'; proc glm data=vlong;

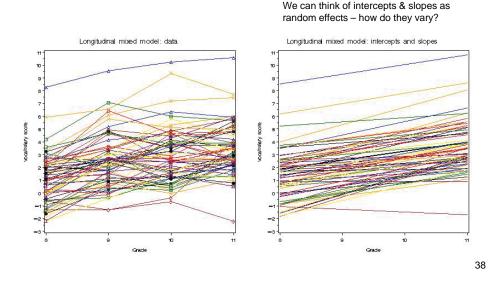
class subject; model vocab = subject grade|grade|grade / ss1; run;

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error	66 189	1067.931328 155.119447	16.180778 0.820738	19.71	<.0001
Corrected Total	255	1223.050775			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
subject	63	873.9856750	13.8727885	16.90	<.0001
grade	1	177.1464003	177.1464003	215.84	<.0001
grade*grade	1	13.6530250	13.6530250	16.64	<.0001
grade*grade*grade	1	3.1462278	3.1462278	3.83	0.0517

This gives results identical to the repeated measures univariate results (except that the pooled Error(grade) is used for all tests)

34

Preview: longitudinal mixed models


Level 1 model: individual growth

- Constant: $y_{it} = \beta_{i0} + \varepsilon_{it}$
- Linear growth: $y_{it} = \beta_{i0} + \beta_{i1}$ (Grade-8) + ε_{it}
- Quadratic growth: $y_{it} = \beta_{i0} + \beta_{i1}$ (Grade-8) + β_{i2} (Grade-8)² + ε_{it}

Interpretation:

- β_{i0} is the true initial status of person i at grade 8
- β_{i1} is the true slope of person i growth trajectory at grade 8
- β_{i2} is the true curvature (change in slope) for person i per year
- These differ from traditional linear models in that we regard individual coefficients as random effects that can also be modeled

Longitudinal models: Individual growth curves

Preview: longitudinal mixed models

- Level 2 model: Random effects (intercepts & slopes as outcomes)
 - $\beta_{i0} = \gamma_{00} + \zeta_{0i}$ • $\beta_{i1} = \gamma_{10} + \zeta_{1i}$ where $\begin{pmatrix} \zeta_{0i} \\ \zeta_{1i} \end{pmatrix} \sim N \begin{bmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix}$
- Level 2 model: Between individual effects
 - e.g., if individuals had been given different treatments
 - $\beta_{i0} = \gamma_{00} + \gamma_{01} \text{ TREAT}_i + \zeta_{0i}$
 - $\beta_{i1} = \gamma_{10} + \gamma_{11} \text{ TREAT}_i + \zeta_{1i}$

Mixed models allow us to model random effects in flexible ways and test hypotheses regarding popⁿ variance components

PROC MIXED for longitudinal growth

%include data(vocab); *-- Define grade so 0 = Grade 8 (initial status);

```
data vlong; set vocab;
    keep subject grade vocab;
    grade=0; vocab=grade8; output;
    grade=1; vocab=grade9; output;
    grade=2; vocab=grade10; output;
    grade=3; vocab=grade11; output;
    run;
*-- Linear growth;
proc mixed data=vlong noinfo method=ml covtest;
    class subject;
    model vocab = grade / solution;
    random intercept grade / subject=subject type=un;
run;
```

*-- Quadratic growth; proc mixed data=vlong noinfo method=ml covtest; class subject; model vocab = grade|grade / solution; random intercept grade|grade / subject=subject type=un; run;

39

Example: Pre-post design (2B, 1W)

subj	group	sex	pre	post	fol
1	Control	М	2	3	3
2	Control	М	4	3	4
3	Control	М	6	5	7
4 5	Control	F	5	3	4
5	Control	F	4	6	4
6	Treat_A	М	8	9	9
7	Treat_A	М	5	8	9
8	Treat_A	F	3	5	6
9	Treat_A	F	4	4	5
10	Treat_B	М	4	7	8
11	Treat_B	М	3	5	6
12	Treat_B	М	б	9	8
13	Treat_B	F	6	б	8
14	Treat_B	F	2	5	6
15	Treat_B	F	3	7	7
16	Treat_B	F	5	7	8

Data in wide format

NB: the Between-S design is unbalanced

	group
sex	control A B
F	2 2 4
м	3 2 3

Type II tests preferred for unbalanced designs

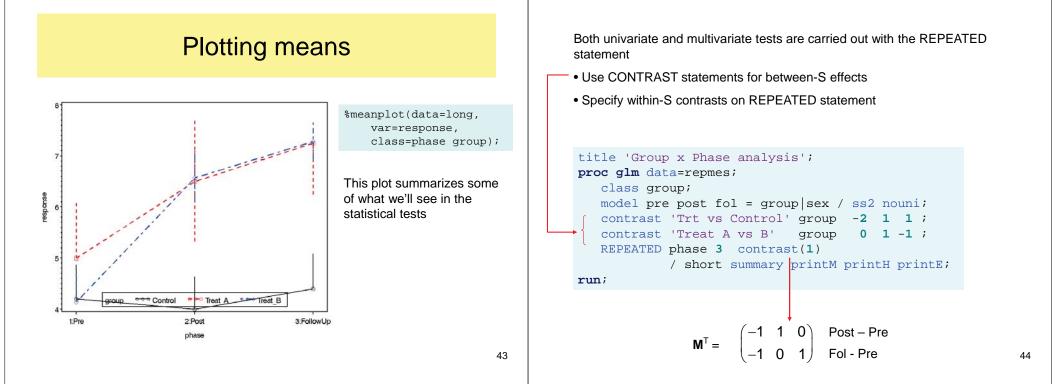
41

Plotting means

data long;

set repmes; phase = '1:Pre ' ; response=pre; output; phase = '2:Post ' ; response=post; output;

phase ='3:FollowUp' ; response=fol; output;


subj	group	sex	phase	response
1	Control	М	1:Pre	2
1	Control	М	2:Post	3
1	Control	М	3:FollowUp	3
2	Control	М	1:Pre	4
2	Control	М	2:Post	3
2	Control	М	3:FollowUp	4
3	Control	М	1:Pre	б
3	Control	М	2:Post	5
3	Control	М	3:FollowUp	7
4	Control	F	1:Pre	5
4	Control	F	2:Post	3
4	Control	F	3:FollowUp	4
5	Control	F	1:Pre	4
5	Control	F	2:Post	6
5	Control	F	3:FollowUp	4

Need to transpose data to the long format, to plot

response * factor(s)

NB: phase is prefixed by a number to sort properly on an axis

Between-S tests

- Tests of Between-S effects appear separately, because they use within group SS as the error term
- The same Between-S tests are used with a MANOVA

	Repeated M	Measures Analysi	s of Variance					
Tests of Hypotheses for Between Subjects Effects								
Source	DF	Type II SS	Mean Square	F Value	Pr > F			
group	2	42.25729927	21.12864964	4.63	0.0377			
sex	1	11.65729927	11.65729927	2.56	0.1410			
group*sex	2	26.04825629	13.02412814	2.86	0.1045			
Error	10	45.61111111	4.56111111					
Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F			
Trt vs Control	1	35.86440678	35.86440678	7.86	0.0187			
Treat A vs B	1	0.37426901	0.37426901	0.08	0.7804			

Within-S tests: Univariate

		Repeated Mea	sures Analysi	s of Varia	ance		
Univa	riate Tes	ts of Hypothes	ses for Within	Subject 1	Effects		
						Adj P	r > F
Source	DF	Type II SS	Mean Square	F Value	Pr > F	G - G	H - F
phase	2	33.50000000	16.75000000	20.87	<.0001	<.0001	<.0001
phase*group	4	15.73357664	3.93339416	4.90	0.0064	0.0122	0.0064
phase*sex	2	0.33357664	0.16678832	0.21	0.8141	0.7662	0.8141
phase*group*sex	4	2.04420114	0.51105028	0.64	0.6424	0.6116	0.6424
Error(phase)	20	16.05555556	0.80277778				
	Gre	enhouse-Geisse	er Epsilon	0.7995			
	Huy	nh-Feldt Epsil	on	1.4037			
						Adj	Pr > F
Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F	G – G	H - F
phase*Trt vs Control	2	12.57909605	6.28954802	7.83	0.0031	0.0063	0.0031
phase*Treat A vs B	2	1.42397661	0.71198830	0.89	0.4275	0.4092	0.4275

46

Within-S tests: Multivariate

M matrix, from CONTRAST(1)

phase_N	represents the	contrast	between	the	nth	level	of	phase	and	the	lst
	M Matri	x Descril	bing Tran	nsfor	med	Variak	oles	3			
	p	re	I	post				fol			
phase_2 phase_3	-1.0000000 -1.0000000		1.000000					00000			

Sphericity tests:

Variables	DF	Mauchly's Criterion	Chi-Square	Pr > ChiSq
Transformed Variates	2	0.4349367	7.4929926	0.0236
Orthogonal Components	2	0.7492726	2.5978712	

Within-S tests: Multivariate

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no phase Effect H = Type II SSCP Matrix for phase E = Error SSCP Matrix S=1 M=0 N=3.5 Statistic Value F Value Num DF Pr > F Den DF Wilks' Lambda 0.14947512 25.61 2 9 0.0002 0.85052488 25.61 2 0.0002 Pillai's Trace 9 Hotelling-Lawley Trace 5.69007670 25.61 2 9 0.0002 5.69007670 25.61 2 9 Roy's Greatest Root 0.0002

MANOVA Test Criteria and F Approximations for the Hypothesis of no phase*group Effect H = Type II SSCP Matrix for phase*group

	E = Error :	SSCP Matrix			
	S=2 M=-0	.5 N=3.5			
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.31773492	3.48	4	18	0.0283
Pillai's Trace	0.68518291	2.61	4	20	0.0667
Hotelling-Lawley Trace	2.13809442	4.69	4	9.8537	0.0221
Roy's Greatest Root	2.13379071	10.67	2	10	0.0033

Within-S tests: Multivariate

ANOVA Test Criteria and Exac H =	Type II SSCP Ma E = Error S	trix for ph		ino pinapo	
	S=1 M=0	N=3.5			
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.95685724	0.20	2	9	0.8200
Pillai's Trace	0.04314276	0.20	2	9	0.8200
Hotelling-Lawley Trace	0.04508798	0.20	2	9	0.8200
Roy's Greatest Root	0.04508798	0.20	2	9	0.8200

MANOVA Test Criteria and F A $H = Ty$	pproximations for pe II SSCP Matri: E = Error S	k for phase			coup*sex
	S=2 M=-0.	5 N=3.5			
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.69426103	0.90	4	18	0.4841
Pillai's Trace	0.31059765	0.92	4	20	0.4721
Hotelling-Lawley Trace	0.43338209	0.95	4	9.8537	0.4747
Roy's Greatest Root	0.41658268	2.08	2	10	0.1753

Repeated measures as GLH: H₀: LBM=0

- L: specifies between-S effects: selection of coefficients tested
- M: specifies within-S effects: linear combinations of responses
- \rightarrow LBM=0 tests between-S diff^{ces} in the transformed responses

	Between-	Between-S effects tested using ${\bf M}$ for factor C					
Within-S effects	Intercept	$L = L_A$	$\mathbf{L} = \mathbf{L}_{B}$	$\mathbf{L} = \mathbf{L}_{A^*B}$			
M = (1 1 1)		A	В	A*B			
$\mathbf{M} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$	С	A*C	B*C	A*B*C			

Repeated measures: GLH approach

<pre>proc glm data=repmes; class group; model pre post fol = gro contrast 'Trt vs Control contrast 'Treat A vs B' * Group x Time effect; manova h=group M = * Sex x Time effect; manova h=sex M = * Time effect; manova h=intercept M = * Group, Sex and Group manova h=group sex M =</pre>	<pre>' group -2 1 1; group 0 1 -1; (-1 1 0, 0 -1 1) / short; (-1 1 0, 0 -1 1) / short; (-1 1 0, 0 -1 1) / short; *Sex effects;</pre>	Use this method for testing contrasts of repeated measures <i>not provided</i> by the REPEATED stmt
manova h=group sex M = run;	(1 1 1) / short;	
Between (L)	Within (M)	51

- Tests: aov <-Manova(mod, idesign=~within)
- print(aov); summary(aov) univ & multiv tests

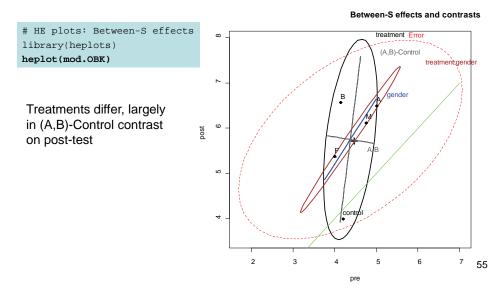
2 posttest

followup

library(car) # for Anova() functions
MANOVA model
<pre>mod.OBK <- lm(cbind(pre, post, fup) ~ treatment*gender, data=OBK)</pre>
<pre># for linear and quadratic effects of 'Time' phase <- ordered(c("pretest", "posttest", "followup"),</pre>
Multivariate tests for repeated measures
aov.OBK <- Manova(mod.OBK, idata=idata, idesign=~phase, type="III") aov.OBK
> idata
phase 1 pretest

Repeated measures in R

Multivariate tests: print(aov, test="Pillai") - compact display for one statistic

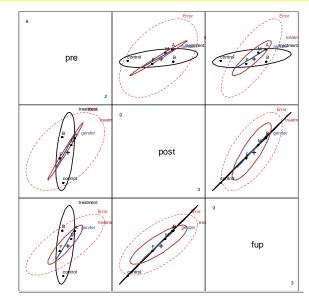

> aov.OBK							
Type III Repeated Measu:	res	MANOVA Te	ests: Pill	ai test	statis	stic	
I	Df 1	test stat	approx F	num Df d	len Df	Pr(>F)	
(Intercept)	1	0.967	296.389	1	10	9.241e-09	* * *
treatment	2	0.441	3.940	2	10	0.0547069	
gender	1	0.268	3.659	1	10	0.0848003	
treatment:gender	2	0.364	2.855	2	10	0.1044692	
phase	1	0.814	19.645	2	9	0.0005208	* * *
treatment:phase	2	0.696	2.670	4	20	0.0621085	
gender:phase	1	0.066	0.319	2	9	0.7349696	
treatment:gender:phase	2	0.311	0.919	4	20	0.4721498	
Signif. codes: 0 `***'	0.0	001 `**′ (0.01 `*′ 0	.05 `.′	0.1 `	' 1	

The summary() method for Anova.mlm objects gives more detail

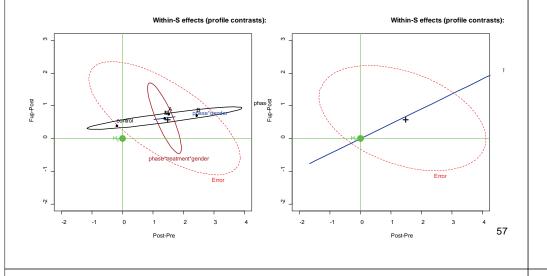
53

Univariate Type III Re	peated-Measures ANOVA Assuming Sphericity	
	SS num Df Error SS den Df F Pr(>F)	
(Intercept)		
treatment	35.95 2 45.61 10 3.9405 0.054707.	betwee
gender treatment:gender	16.69 1 45.61 10 3.6591 0.084800 . 26.05 2 45.61 10 2.8555 0.104469	
phage	20.05 2 45.01 10 2.0555 0.104409 25.00 2 16.06 20 16.1220 6.7220 05.**	*
treatment . phase	15 58 4 16 06 20 4 8510 0 006723 **	" ∖
gender: phase		within
treatment:gender:phase	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	2.01 1 10.00 20 0.0000 0.012509	
Signif. codes: 0 `***	′ 0.001 `**′ 0.01 `*′ 0.05 `.′ 0.1 ` ′ 1	
Mauchly Tests for Sphe	wi di tur	
Madelity leses for Spile	litity	
	Test statistic p-value	
phase	0.74927 0.27282	
treatment:phase	0.74927 0.27282	
treatment:gender:phase	0.74927 0.27282	
Greenhouse-Geisser and	Huynh-Feldt Corrections	
for Departure from Sp		
	GG eps Pr(>F[GG])	
phase	0.79953 0.0002814 ***	
treatment:phase		
gender:phase	0.79953 0.7089599	
treatment:gender:phase	0.79953 0.6116209	
Signif. codes: 0 `***	′ 0.001 `**′ 0.01 `*′ 0.05 `.′ 0.1 ` ′ 1	
	HF eps Pr(>F[HF])	
phase troatmont inhago	0.92786 0.0001125 *** 0.92786 0.0084388 **	
<pre>treatment:phase gender:phase</pre>	0.92786 0.0084388 ^^	
treatment:gender:phase		

HE plots for between effects

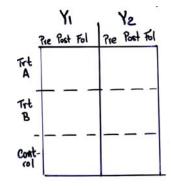


HE plots for between effects

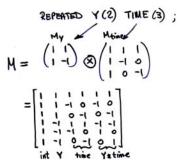

pairs(mod.OBK)

Univariate tests

Treatment effects are nearly the same at post-test and follow-up



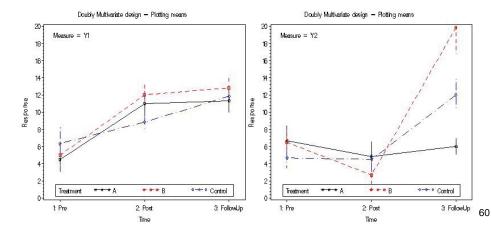
HE plots for within effects



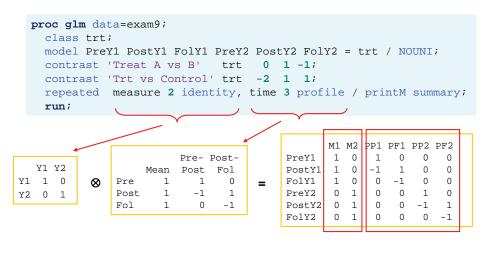
Doubly-multivariate designs

- Repeated measures
- Two (or more) separate criteria

• For ordiniary repeated measure designs w/2 or more repeated factors, Repraned stmt generates proper M matrix from one-way contrasts


But this doesn't quite do the right tests (why?)

Doubly-multivariate designs: Example


trt	reps	Pre Y1	Post Y1	Fol Y1	Pre Y2	Post Y2	Fol Y2
TreatA TreatA TreatA TreatA TreatA TreatA	1 2 3 4 5	3 0 4 7 3	13 14 6 7 12	9 10 17 13 11	0 6 8 7 6	0 6 2 6 12	9 3 6 4 6
TreatA	6	10 9	14	17	13 8	'3 11	8 27
TreatB TreatB TreatB	2 3 4	4 8 5	16 10 9	13 9 13	9 12 3 3	3 0 0	26 18 14
TreatB TreatB	5 6	0 4	15 11	11 14	4	0 2	25 9
Control Control Control Control	1 2 3 4	10 2 4 10	12 8 9 8	15 12 10 8	4 8 2 5	3 7 0 8	7 20 10 14
Control Control	5 6	11 1	11 5	11 15	1 8	0 9	11 10

data reshape; set exam9; if trt ~= 'Control' then trt=substr(trt,6); measure = 'Yl'; time = '1: Pre '; response = PreYl ; output; time = '2: Post '; response = PostYl; output; time = '3: FollowUp'; response = FolYl ; output; measure = 'Y2'; time = '1: Pre '; response = PreY2; output; time = '2: Post '; response = PostY2; output; time = '3: FollowUp'; response = FolY2; output; time = '3: FollowUp'; response = FolY2; output; time = '3: FollowUp'; response = FolY2; output;

58

Doubly-multivariate design: Example

"identity" contrast does the right thing

61

MANOVA test of time

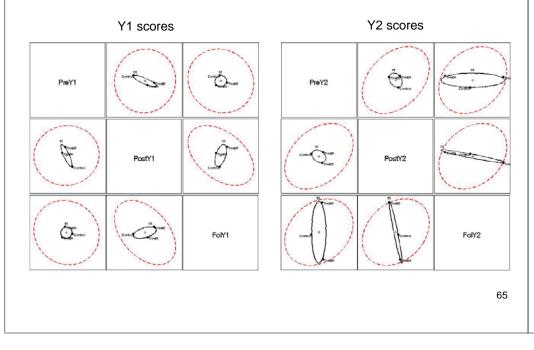
	Criteria for the H			re*time 1	Effect
Н =	Type III SSCP Matr				
	S=1	M=1 N=5			
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.14071380	18.32	4	12	<.0001
Pillai's Trace	0.85928620	18.32	4	12	<.0001
Hotelling-Lawley Trace	6.10662362	18.32	4	12	<.0001
Roy's Greatest Root	6.10662362	18.32	4	12	<.0001

MANOVA test of time x treatment interaction

MANOVA Test Cri H = Type	teria for the H III SSCP Matri: S=2 M=0	x for measu			t Effect
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.22861451	3.27	8	24	0.0115
Pillai's Trace	0.96538785	3.03	8	26	0.0151
Hotelling-Lawley Trace	2.52557514	3.64	8	15	0.0149
Roy's Greatest Root	2.12651905	6.91	4	13	0.0033

Equal means on measures - not applicable here (why?)

	H = Type III SSCP Matrix for measure								
E = Error SSCP Matrix									
Den DF	Pr > F								
14	<.0001								
14	<.0001								
14	<.0001								
14	<.0001								
	14 14								


MANOVA test of treatment

MANOVA Test Criteria for the Hypothesis of no measure*trt Effect								
Н = Тур	e III SSCP Matr	ix for meas	sure*trt					
	E = Error SS	CP Matrix						
	S=2 M=-0.	5 N=б						
Statistic	Value	F Value	Num DF	Den DF	Pr > F			
Wilks' Lambda	0.72215797	1.24	4	28	0.3178			
Pillai's Trace	0.27937444	1.22	4	30	0.3240			
Hotelling-Lawley Trace	0.38261660	1.31	4	15.818	0.3074			
Roy's Greatest Root	0.37698780	2.83	2	15	0.0908			

Univariate Between-S tests (ignore: not a sensible hypothesis)

Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects					
Source	DF	Type III SS	Mean Square	F Value	Pr > F
trt	2	112.9074074	56.4537037	2.83	0.0908
Error	15	299.5000000	19.9666667		
Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
Treat A vs B	1	105.1250000	105.1250000	5.27	0.0366
Trt vs Control	1	7.7824074	7.7824074	0.39	0.5418

Visualizing: HE plots

Summary

- Repeated measure designs:
 - more sensitive tests for within-S factors
 - allow study of growth and change
- Univariate approach
 - strong assumptions, but GG and HF can correct for violation
- MANOVA
 - NO assumption about structure of Σ
 - Tests based on Wilks' Λ, HLT, Roy, …
- Mixed model
 - Allows missing data, variable time points
 - Can model individual's coefficients in a Level 2 model
- Visualization: meanplots, HE plots