
Regression: Model assessment
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• How to assess the contributions of individual predictors 

to a regression model?
Type I (sequential) tests: added contribution of each new 
variable, in a given order
Type II (partial) tests: unique contribution of each variable, above 
all others

• More general methods: the general linear test: H0: L =0
• The Marginality principle: always include low-order 

relatives
Testing hierarchical (ordered subset) models
Moderator variables: interaction effects
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Uncorrelated predictors
• When predictors are 

uncorrelated, their SSR are 
additive

   SSR(X1 X2) = SSR(X1)    
                        + SSR(X2)

• This makes it easy to see & test 
the contributions of each 
predictor
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This “Ballentine” diagram shows 
variance or SS by areas of circles
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Example: therapy data

For the therapy data,  
PersTest and IntExt turn 
out to be nearly 
uncorrelated.

Each have modest 
correlations with 
Therapy, but jointly 
account for 92%

In this example, IntExt acts 
as a suppressor variable for 
the test of PersTest, by 
removing effect of IntExt from 
error variance 



5

Correlated predictors
• Typically, predictors are 

correlated
• So, the portions of variance of 

Y they account for overlap

      SSR(X1 X2) < SSR(X1)    
                           + SSR(X2)

• How to assess contribution of 
each X?
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Sequential & partial SS
• Sequential SS (Type I)

1st variable accts for all it can
Each next var: only what is 
left over

• contributions are additive

     SSR(X1 X2) = SSR(X1)
                          + SSR(X2 | X1)

• Only useful if there is a reason 
for ordering variables

e.g., polynomial models
e.g., hierarchical models

Y

X1
X2

SSESSR(X1) SSR(X2 | X1)

H0: 1 = 0 (ignoring X2, X3)

H0: 2 = 0 (adjusting for only X1)

H0: 3 = 0 (adjusting for X1, X2)
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Sequential & partial SS
• Partial SS (Type II)

Each var accts for its 
unique contribution
Q: can we delete Xi given 
that all others are included?
t =bi / s(bi) is a partial test

• These are most generally 
useful, except where there is a 
hierarchical ordering of 
predictors

• In ANOVA designs there are 
also Type III (and IV) tests 
(take empty cells into account)
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H0: 1 = 0 (adjusting for X2, X3)

H0: 2 = 0 (adjusting for X1, X3)

H0: 3 = 0 (adjusting for X1, X2) 8

Multiple regression: therapy data

proc reg data=therapy;
model therapy = perstest intext sx;run;

Analysis of Variance

                                    Sum of           Mean
Source                   DF        Squares         Square    F Value    Pr > F

Model                     3      982.05152      327.35051     109.43    <.0001
Error                     6       17.94848        2.99141
Corrected Total           9     1000.00000

Root MSE              1.72957    R-Square     0.9821
Dependent Mean       50.00000    Adj R-Sq     0.9731
Coeff Var             3.45914

                        Parameter Estimates

                     Parameter       Standard
Variable     DF       Estimate          Error    t Value    Pr > |t|

Intercept     1      -14.79157        5.22575      -2.83      0.0299
PERSTEST      1        1.71897        0.17268       9.95      <.0001
INTEXT        1        0.96956        0.25620       3.78      0.0091
SX            1       10.72600        2.40251       4.46      0.0043

Dummy (0/1) for sex
sx=1 for female here

Partial 
tests
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Sequential vs. partial tests

proc reg data=therapy;
model therapy = perstest intext sx / SS1 SS2;run;

Parameter Estimates 
 
                                              Parameter      Standard 
 Variable    Label                     DF      Estimate         Error   t Value 
 
 Intercept   Intercept                  1     -14.79157       5.22575     -2.83 
 PERSTEST    Personality Test Score     1       1.71897       0.17268      9.95 
 INTEXT      Internal External scale    1       0.96956       0.25620      3.78 
 SX          Sex                        1      10.72600       2.40251      4.46 
 
                              Parameter Estimates 
 
Variable    Label                     DF   Pr > |t|     Type I SS    Type II SS 
 
Intercept   Intercept                  1     0.0299         25000      23.96662 
PERSTEST    Personality Test Score     1     <.0001     360.00000     296.42129 
INTEXT      Internal External scale    1     0.0091     562.42744      42.84039 
SX          Sex                        1     0.0043      59.62408      59.62408 

SSR(X1)
SSR(X2 | X1)
SSR(X3 | X1 X2)

SSR(X1 | X2 X3)
SSR(X2 | X1 X3)
SSR(X3 | X1 X2)

F = SSR / MSE gives the test 
statistic for each hypothesis 10

Model comparison
• All statistical tests resolve to comparisons between two 

models
E.g., simple linear regression: H0: 1 = 0 vs Ha: 1

• Full model:           yi = 0 + 1 xi + i
• Reduced model:   yi = 0           + i
• Test:

More generally, we can compare any larger model to a subset 
model, using the extra sum of squares, e.g.,

    H0: 3 =  4 = 0 
SSR(X3 X4 | X1 X2) = SSR(X1 X2 X3 X4) – SSR(X1 X2)
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Testing composite hypotheses

            Test 1 Results for Dependent Variable THERAPY 
 
                                       Mean 
       Source             DF         Square    F Value    Pr > F 
 
       Numerator           2      311.02576     103.97    <.0001 
       Denominator         6        2.99141 

proc reg;
model therapy = perstest intext sx;
test intext, sx;
run; Test 2 = 3 = 0 | 1

SSR(X2 X3 | X1) = SSR(X1 X2 X3) – SSR(X1) = 982.05 – 360 = 622.05 

1 2 3 1

1 2 3
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General Linear Hypothesis Tests
• Even more generally, any hypothesis test can be 

regarded as an example of a GLH of the form

where the hypothesis matrix, L, contains specified constants and is 
of rank q = df for hypothesis

• e.g,

0 ( 1) 1
       :

p qpq
H L

0

1

2

3

0 0 1 0 0
0 0 0 1 0

L

Test 2 = 3 = 0

0

1

2

3

0 1 1 0 0L

test intext, sx;

Test 1 – 2 = 0

test perstest - intext;
SAS
syntax



13

General Linear Hypothesis Tests

• In all cases, the sums of squares for the hypothesis, H0:
L = 0 has the same form,

This measures the squared distance of L from 0
• GLH tests extend in a natural way to

MANOVA, MMReg: Y = X B + E

Repeated measures designs

1 () ( )( )T T T
hypSS L LXb XL Lb

L B 0

L B M 0

Example: Heart disease, coffee and stress
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In the model
lm(Heart ~ Coffee + Stress, data=coffee)

Test: H0: Coffee = Stress = 0

(X’X)-1 is covariance matrix of 
0

1

2

0 0 0
0 1 0
0 0 1

L selects 1, 2

1 () )  ( )( T T TLb X LL X Lb

is squared distance of b from (0,0)
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Marginality principle

• Any model including a high-order term should 
normally include all low-order relatives

Interactions: Perstest * Sex Perstest + Sex (“main 
effects”)
Polynomial models: X3 2

• We can neither test nor interpret main effects of 
variables that interact

X1 * X2 1) of X1 varies with X2

• Similarly, if X3 is important, X and X2 must 
remain in the model (even if NS!)
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Hierarchical testing

• Variables in regression are sometimes ordered
in terms of research questions & hypotheses

Include necessary control variables (age, IQ)
Test for effects of new predictor(s) beyond old ones

• In such cases, do hierarchical (blockwise) tests 

proc reg data=mydata;
        var y age IQ  reading math  depression anxiety;
   block1:     model y = age IQ;
   block2:     model y = age IQ  reading math;
                    test reading, math;
   block3:     model y = age IQ  reading math  depression anxiety;
                    test depression, anxiety;
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Moderator variables
• A moderator effect occurs when the effect of one variable, x1, 

depends on, or varies with variable, x2.
i.e., interaction of x1 and x2.
i.e., slope (b1), for x1 varies with x2.

• In regression, this is modeled by including the product, x1 * x2 in the 
model

In SAS proc reg & SPSS must calculate x1 * x2 explicitly
(often useful for interpretation to center x1, x2)
Must include x1 and x2 (marginality)
Must test x1*x2 by partial test
Conclude no moderator effect if b3 is non-significant

0 1 1 2 2 3 1 2

0 1 3 2 1 2 2( )
)(y b b x b x b x

b b
x

b x x b x
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data therapy; set therapy;
PTxSX = perstest * sx;
IExSX = intext * sx;

*-- test moderator of Sex on Perstest;
proc reg data=therapy;

model therapy = perstest sx PTxSX;
run;

                                 Parameter      Standard 
  Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
 
  Intercept   Intercept    1     -20.70091      11.41755     -1.81     0.1198 
  PERSTEST    PersTest     1       2.00604       0.34022      5.90     0.0011 
  SX          Sex          1       9.94015      14.44245      0.69     0.5170 
  PTxSX                    1       0.27279       0.46331      0.59     0.5775 

There is no evidence that the slope 
for PersTest varies with Sex

The slope for females is only 0.27 
less than that for males

calculate products

Interpreting such models is easiest 
if you plot the fitted relationships
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*-- test moderator of Sex on IntExt;
proc reg data=therapy;

model therapy = intext sx IExSX;
run;

                             Parameter      Standard 
  Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
 
  Intercept   Intercept    1     -24.00000      19.53597     -1.23     0.2653 
  INTEXT      IntExt       1      18.66667       5.17520      3.61     0.0113 
  SX          Sex          1      53.60825      20.14653      2.66     0.0375 
  IExSX                    1     -16.15120       5.19916     -3.11     0.0209 

There is strong evidence that the 
slope for IntExt varies with Sex

The slope for females is 16.15 less 
than for males
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*-- test both moderators with sex;
proc reg data=therapy;

model therapy = perstest intext sx PTxSX IExSX;
test PTxSX, IExSX;
run;

                                                Parameter      Standard 
  Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
 
  Intercept   Intercept    1     -16.73684       3.48499     -4.80     0.0086 
  PERSTEST    PersTest     1       2.42105       0.22056     10.98     0.0004 
  INTEXT      IntExt       1      -4.73684       2.31673     -2.04     0.1104 
  SX          Sex          1      22.97128       4.53565      5.06     0.0072 
  PTxSX                    1      -1.22461       0.26226     -4.67     0.0095 
  IExSX                    1       6.16934       2.32193      2.66     0.0566 

Arguably, it might be better to test the full model, with both interactions:

                                         Mean 
           Source             DF         Square    F Value    Pr > F 
 
           Numerator           2        7.74189      12.56    0.0189 
           Denominator         4        0.61618 

Joint test for both interactions: Do I need any interactions with sex?



21

Testing and comparing models in R
• In R, fit a model using mod <-lm(y ~ x1+x2+ ...)
• Test terms in that model using summary(mod)
• Type II F-tests with car::Anova(mod)
• Compare models using anova(mod1, mod2, ...)
• Linear hypotheses: car::linearHypothesis()

mod1 <- lm(therapy ~ perstest, data= therapy)
mod2 <- lm(therapy ~ perstest + intext, data=therapy)
mod3 <- lm(therapy ~ perstest + intext + sex, data=therapy)
summary(mod3)
Anova(mod3)  # F tests

# test interactions
mod4 <- lm(therapy ~ perstest*sex + intext*sex, data=therapy)

# compare models
anova(mod1, mod2, mod3, mod4) 22

> summary(mod3)
Call:
lm(formula = therapy ~ perstest + intext + sex, data = therapy)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -4.0656     3.7572  -1.082  0.32078    
perstest      1.7190     0.1727   9.954 5.94e-05 ***
intext        0.9696     0.2562   3.784  0.00913 ** 
sexM        -10.7260     2.4025  -4.464  0.00426 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.73 on 6 degrees of freedom
Multiple R-squared: 0.9821,     Adjusted R-squared: 0.9731 
F-statistic: 109.4 on 3 and 6 DF,  p-value: 1.256e-05

> anova(mod1, mod2, mod3, mod4)
Analysis of Variance Table

Model 1: therapy ~ perstest
Model 2: therapy ~ perstest + intext
Model 3: therapy ~ perstest + intext + sex
Model 4: therapy ~ perstest * sex + intext * sex

Res.Df    RSS Df Sum of Sq       F    Pr(>F)    
1      8 640.00                                   
2      7  77.57  1    562.43 912.770 7.149e-06 ***
3      6  17.95  1     59.62  96.765 0.0005989 ***
4      4   2.46  2     15.48  12.564 0.0188571 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Hierarchical tests of 
modi vs. modi-1

Partial t-tests for 
coefs in mod3

These assume nested
models
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> coef(mod3)
(Intercept)    perstest      intext        sexM
-4.065574    1.718970    0.969555  -10.725995 

> linearHypothesis(mod3, c("intext", "sexM"))
Linear hypothesis test

Hypothesis:
intext = 0
sexM = 0

Model 1: restricted model
Model 2: therapy ~ perstest + intext + sex

Res.Df RSS Df Sum of Sq      F    Pr(>F)    
1      8 640.00                                  
2      6  17.95  2    622.05 103.97 2.206e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> tests <- matchCoefs(mod4, ":")
> linearHypothesis(mod4, tests)
Linear hypothesis test

Hypothesis:
perstest:sexM = 0
sexM:intext = 0

Model 1: restricted model
Model 2: therapy ~ perstest * sex + intext * sex

Res.Df     RSS Df Sum of Sq      F Pr(>F)  
1      6 17.9485                              
2      4  2.4647  2    15.484 12.564 0.01886 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Linear hypotheses 
for 1 or more 
coefficients in mod3

Test all interactions
(“:” in name) in mod4
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Visualizing model effects
• In R, the effects and visreg packages make it easy 

to visualize the effects of terms in models
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> library(visreg)
> visreg(mod3)

Conditional plots for each predictor, setting all others to their median value
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Visualizing model effects
• The effects package is most useful for plotting models 

with interactions

> library(effects)
> plot(allEffects(mod4))

Conditional plots for each high-order term, setting others to mean value
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Summary
• Sequential (Type I) and Partial (Type II) SS provide 

different ways of assessing the contribution of a given 
predictor

Type I:  added contribution of each new variable, in order
Type II: added contribution of each variable above all others

• Each of these essentially give a test comparing a “full” 
model against a “reduced” model

• This idea extends to the General Linear Test, H0: L =0
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Summary
• Tests of complex models must respect the Marginality 

Principle– include low-order relatives
• Testing hierarchical models and moderator variables are 

examples of these ideas.
• Always important to plot model terms for interpretation
• We will consider model selection problems more 

generally later


