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Regression: Model assessment

Psychology 6140

Topics

* How to assess the contributions of individual predictors
to a regression model?
= Type | (sequential) tests: added contribution of each new
variable, in a given order
= Type Il (partial) tests: unique contribution of each variable, above
all others
* More general methods: the general linear test: H,: LB=0

* The Marginality principle: always include low-order
relatives
= Testing hierarchical (ordered subset) models
= Moderator variables: interaction effects

Uncorrelated predictors

When predictors are
uncorrelated, their SSR are

. Y
additive

SSR(X1)

SSR(X1 X2) = SSR(X1) SSR(X2)

+ SSR(X2)

This makes it easy to see & test
the contributions of each
predictor

Xy Xz

This “Ballentine” diagram shows
variance or SS by areas of circles

Example: therapy data

Partial Relations

Balantine

For the therapy data,
PersTest and IntExt turn
out to be nearly
uncorrelated.

Each have modest
correlations with
Therapy, but jointly
account for 92%

Therapy. IntExt 5

In this example, IntExt acts
as a suppressor variable for
the test of PersTest, by
removing effect of IntExt from
error variance

% Vanance Accounted for

PersTest IntExt PersTest Error

0.0 36 22 1.0




Correlated predictors

Typically, predictors are
correlated

So, the portions of variance of

Sequential & partial SS

* Sequential SS (Type I)
= 1stvariable accts for all it can
= Each next var: only what is

Y they account for overlap SR ) left over SSR(X1) SSR(X2 | X1)
e . contributions are additive
SSR(X1 X2) < SSR(X1)
+ SSR(X2) SSR(X1 X2) = SSR(X1)
\/ + SSR(X2 | X1)
How to assess contribution of X . .
Xy 2 e Only useful if there is a reason X Xz
each X? X . !
for ordering variables
= e.g., polynomial models L ]
= e.g., hierarchical models Ho: B, = 0 (ignoring X2, X3)
H,: B, = 0 (adjusting for only X1)
5 Ho: B; = 0 (adjusting for X1, X2) 6
Sequential & partial SS Multiple regression: therapy data
Partial SS (Type ”) v proc geglg dﬁta:therapy; ) / Dummy (0/1) for sex
. model therapy = perstest Intext sx; sx=1 for female here
= Each var accts for its run-
unigue contribution
= Q: can we delete X; given =SSR 3SR(X2 | X1) Analysis of Variance
that all others are included? sum of Mean
] ) Source DF Squares Square F Value Pr > F
" t=Db;/s(b) is a partial test Model 3 982.05152 327.35051 109.43  <.0001
These are most generally Egltggcted Total g 10(%:83338 2-99141
u;eful, e_xcept Whgre thereis a v Root use 172087 Rosquare 0.9621
Blrizargggal ordering of y X, Congvar Mean °3iaserq U RSa 097
1
In ANOVA designs there are Paraneter Estinates )
) Parameter Standard Partial
also Type lll (and IV) tests Q= P Variable DF Estimate Error  t Value Pr > |t| tests
. H,: B, = O (adjusting for X2, X3)
(take empty cells into account) st L o N B =
Ho: B, = 0 (adjusting for X1, X3) INTEXT 1 0.96956 0.25620 3.78 0-0091
SX 1 10.72600 2.40251 4.46 0.0043

Ho: B3 = 0 (adjusting for X1, X2)
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Sequential vs. partial tests

proc reg data=therapy;
model therapy = perstest intext sx / SS1 SS2;
run;

Model comparison

* All statistical tests resolve to comparisons between two
models

= E.g., simple linear regression: Hy: B; =0vs H_: B; #0

Parameter Estimates « Full model: yi = BO+ Bl Xi + si
Parameter Standard * Reduced model: vy; = BO + g
Variable Label DF Estimate Error t Value . Test:
PERSTEST.  Porsonaiity Test Score 1 ' 1.71897 5176 8.0 . (SSRy,; —SSR yueeg) ! (Afyy —df yees)  SShyp /
INTEXT Internal External scale 1 0.96956 0.25620 3.78 Fr= =
SX Sex 10.72600 2.40251 4.46 MSE,, SS, /df,
Parameter Estimates
variable  Label DF  Pr > |t] Type I 8S  Type II SS = More generally, we can compare any larger model to a subset
Intercept Intercept 1 0.0299 25000 23.96662 model, using the extra sum of squares, e.g.,
PERSTEST Personality Test Score 1 <.0001 360.00000 296.42129
INTEXT Internal External scale 1 0.0091 562.42744 42.84039 H.: B = B =0
X Sex 1 0.0043 59.62408 59.62408 0- M3 4
SSR(X3 X, | X; X;) = SSR(X; X, X5 X,) — SSR(X; X,)
F = SSR / MSE gives the test SSR(X1) SSR(X1 | X2 X3) ~ M
statistic for each hypothesis SSR(X2 | X1) SSR(X2|X1X8) | ful reduced 10
SSR(X3 | X1 X2) SSR(X3 | X1 X2)
oroc reg: * Even more generally, any hypothesis test can be
model therapy = perstest intext sx; regarded as an example of a GLH of the form
test intext, sx; ~
run; _a — : =
TestB,=PB3=0]B,; HO' L B 0
ax(p+l)  pu1 g
Test 1 Results for Dependent Variable THERAPY where the hypothesis matrix, L, contains specified constants and is
" of rank q = df for hypothesis
ean
Source DF Square F Value Pr > F L] e_g’
Numerator 2 311.02576 103.97 <.0001 TestB,=B;=0 TestB, —B,=0
Denominator 6 2.99141
b5 B,
00 10 0
SSR(X, X5 | X;) = SSR(X; X, X5) — SSR(X,) = 982.05 — 360 = 622.05 LB = Al LB=[0 1 -1 0] Pl g
000 18] (O 5,
so Bs B
SSR -SSR )/ (3-1 3
Er (SSR, 4, x, )38~ 622.05/2 _103.97 SAS
MSE, . ., 2.99 1 syntax test intext, sx; test perstest - intext; 1




General Linear Hypothesis Tests

* In all cases, the sums of squares for the hypothesis, H:
L B = 0 has the same form,

SS,,, = (Lb)" L(X"X)™L" (Lb)

This measures the squared distance of L B from O

* GLH tests extend in a natural way to
= MANOVA, MMReg: Y =XB +E LB=0

= Repeated measures designs
LB M=0

13

Example: Heart disease, coffee and stress

L. 7 In the model
Beta space Im(Heart ~ Coffee + Stress, data=coffee)

P Test: HO: BCoﬁee = BStress =0

B
e '-'\“_'f\\ (X’X)tis covariance matrix of B [ﬂl}
\\?k\- ﬂz
W e e
i

Pstress

\
\‘_distance from (0, 0)

00O
L=(0 1 0 selects By, B,
_ ] - | 0 0 1

(Lb) L(X"X)" (Lb)

Beotiee is squared distance of b from (0,0)

14

Marginality principle

* Any model including a high-order term should
normally include all low-order relatives

* Interactions: Perstest * Sex — Perstest + Sex (“main
effects”)

= Polynomial models: X3 — X + X?

* We can neither test nor interpret main effects of
variables that interact
= X, * X, — effect (B,) of X; varies with X,

e Similarly, if X3 is important, X and X2 must
remain in the model (even if NS!)
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Hierarchical testing

* Variables in regression are sometimes ordered
in terms of research questions & hypotheses
* Include necessary control variables (age, 1Q)
= Test for effects of new predictor(s) beyond old ones

* In such cases, do hierarchical (blockwise) tests

proc reg data=mydata;
vary age 1Q reading math depression anxiety;
blockl: model y = age 1Q;
block2: model y = age 1Q reading math;
test reading, math;
block3: model y = age IQ reading math depression anxiety;

test depression, anxiety; 16




Moderator variables

* A moderator effect occurs when the effect of one variable, x,,
depends on, or varies with variable, x,.

= j.e., interaction of x; and X,.
= j.e., slope (b,), for x, varies with x,.
* In regression, this is modeled by including the product, X, * X, in the
model

y =b, + b X, +b,X, +b,(X; xX,) +€
=b, + (b, + by X,)X; + b, X, + €

= In SAS proc reg & SPSS must calculate x; * x, explicitly
= (often useful for interpretation to center Xy, X,)

= Must include x, and x, (marginality)

= Must test x,*x, by partial test

= Conclude no moderator effect if b is non-significant

data therapy; set therapy;
PTxXSX = perstest * sx;

IEXSX = intext * sx;

*-— test
proc reg

} calculate products

moderator of Sex on Perstest;

data=therapy;

model therapy = perstest sx PTxSX;

run;

Variable

Intercept
PERSTEST
SX

PTXSX

Label

Intercept
PersTest
Sex

Parameter
Estimate

-20.70091
2.00604
9.94015
0.27279

There is no evidence that the slope
for PersTest varies with Sex

The slope for females is only 0.27
less than that for males

Interpreting such models is easiest

Standard
Error

11.41755
0.34022
14.44245
0.46331

t Value

-1.81
5.90
0.69
0.59

Pr > |t]

0.1198
0.0011
0.5170

17 if you plot the fitted relationships » 18
* - . . . . .
-- test moderator of Sex on INntExt; Arguably, it might be better to test the full model, with both interactions:
proc reg data=therapy;
model therapy = intext sx IEXSX; )
run- *-— test both moderators with sex;
proc reg data=therapy;
model therapy = perstest intext sx PTxSX I1EXSX;
Parameter Standard -
Variable Label DF Estimate Error t Value Pr > [t test PTXSX, IEXSX;
run;
Intercept Intercept 1 -24.00000 19.53597 -1.23 0.2653
INTEXT IntExt 1 18.66667 5.17520 3.61 0.0113
SX Sex 1 53.60825 20.14653 2.66 0.0 Parameter Standard
TEXSX 1 -16.15120 5.19916 -3.11 Variable  Label DF Estimate Error  t Value Pr > [t]
Intercept Intercept 1 -16.73684 3.48499 -4.80 0.0086
70 - PERSTEST PersTest 1 2.42105 0.22056 10.98 0.0004
There is Strong evidence that the II." A INTEXT IntExt 1 -4.73684 2.31673 -2.04 0.1104
. R f Bk SX Sex 1 22.97128 4.53565 5.06 0.0072
slope for IntExt varies with Sex PTXSX 1 -1.22461 0.26226 -4.67 0.0095
) I - IEXSX 1 6.16934 2.32193 2.66 0.0566
The slope for females is 16.15 less
& J . . . . . i
than for males §o | Joint test for both interactions: Do | need any interactions with sex?
;l-' i Mean
L7 Source DF Square F Value Pr > F
5 L Numerator 2 7.74189 12.56 0.0189
o e Denominator 4 0.61618
4 4 5 8 7 & & D W B B W B 19 20




Testing and comparing models in R

* InR, fita model using mod <-Im(y ~ xX1+x2+ ...)
* Testterms in that model using summary(mod)

* Type Il F-tests with car: : Anova(mod)

e Compare models using anova(mod1l, mod2, ...)
* Linear hypotheses: car: : linearHypothesis()

modl <- Im(therapy ~ perstest, data= therapy)

mod2 <- Im(therapy ~ perstest + intext, data=therapy)

mod3 <- Im(therapy ~ perstest + intext + sex, data=therapy)
summary(mod3)

Anova(mod3) # F tests

# test interactions
mod4 <- Im(therapy ~ perstest*sex + intext*sex, data=therapy)

# compare models
anova(modl, mod2, mod3, mod4) 21

> summary(mod3)

Call:
Im(formula = therapy ~ perstest + intext + sex, data = therapy)
Coefficients:

Estimate Std. Error t value Pr(clt]) i n
(Intercept) -4.0656 3.7572 -1.082 0.32078 Partlal_ t-tests fOI'
perstest 1.7190 0.1727 9.954 5.94e-05 *** coefs in mod3
intext 0.9696 0.2562 3.784 0.00913 **
sexM -10.7260 2.4025 -4.464 0.00426 **

Signif. codes: 0 “**** 0.001 “**” 0.01 “*” 0.05 “.” 0.1 * ~ 1
Residual standard error: 1.73 on 6 degrees of freedom

Multiple R-squared: 0.9821, Adjusted R-squared: 0.9731
F-statistic: 109.4 on 3 and 6 DF, p-value: 1.256e-05

> anova(modl, mod2, mod3, mod4)

Analysis of Variance Table Hierarchical tests of

Model 1: therapy ~ perstest rrIOdi VS. mOdi-l
Model 2: therapy ~ perstest + intext
Model 3: therapy ~ perstest + intext + sex

Model 4: therapy ~ perstest * sex + intext * sex These assume nested
Res.DF RSS Df Sum of Sqg F Pr(GF)
1 8 640.00 models
2 7 77.57 1 562.43 912.770 7.149e-06 ***
3 6 17.95 1 59.62 96.765 0.0005989 ***
4 4 2.46 2 15.48 12.564 0.0188571 *
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ~ 1 22

> coef(mod3)

(Intercept) perstest intext sexM
-4.065574 1.718970 0.969555 -10.725995

> linearHypothesis(mod3, c(intext”, "sexM"))

Linear hypothesis test

Linear hypotheses
for 1 or more
coefficients in mod3

Hypothesis:
intext = 0
sexM = 0

Model 1: restricted model
Model 2: therapy ~ perstest + intext + sex

Res.DF RSS Df Sum of Sq F Pr(>F)
1 8 640.00
2 6 17.95 2 622.05 103.97 2.206e-05 ***

Signif. codes: 0 “**** 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ * 1

> tests <- matchCoefs(mod4, ":')
> linearHypothesis(mod4, tests)
Linear hypothesis test

Test all interactions

(*“z”” in name) in mod4
Hypothesis:

perstest:sexM = 0

sexM:intext = 0

Model 1: restricted model
Model 2: therapy ~ perstest * sex + intext * sex

Res.Df RSS Df Sum of Sq F PrCGF)
1 6 17.9485
2 4 2.4647 2 15.484 12.564 0.01886 *

Signif. codes: 0 “***> 0.001 “**” 0.01 “*” 0.05 “.” 0.1 * ~ 1 23

therapy

Visualizing model effects

* InR, the effects and visreg packages make it easy
to visualize the effects of terms in models

> library(visreg)
> visreg(mod3)

therapy
therapy

perstest intext sex

Conditional plots for each predictor, setting all others to their median value ”




Visualizing model effects

* The effects package is most useful for plotting models
with interactions

> library(effects)
> plot(allEffects(mod4))

perstest*sex effect plot sex*intext effect plot

26 28 30 32 34 4 6 8 10 12 14
1 1 1 1 1 1 1 L 11 1 1 L 1 1

1 1 1
sex: M sex:F sex: M

1 L
sex:F
60
B0
40
30
20
10

0
10

therapy

T 1 T 1 T 7T T T
therapy
=B&
Il 1 1
T 1T 1T 17 1T 177

|
T
26 28 30 32 M 4

perstest intext

Conditional plots for each high-order term, setting others to mean value -

Summary

e Sequential (Type I) and Patrtial (Type Il) SS provide
different ways of assessing the contribution of a given
predictor

= Type |: added contribution of each new variable, in order
= Type Il: added contribution of each variable above all others

* Each of these essentially give a test comparing a “full”

model against a “reduced” model

* This idea extends to the General Linear Test, H,: LB=0

26

Summary

Tests of complex models must respect the Marginality
Principle— include low-order relatives

Testing hierarchical models and moderator variables are
examples of these ideas.

Always important to plot model terms for interpretation

We will consider model selection problems more
generally later
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