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Regression diagnostics
(I thought | was done when | fit the model)

Psychology 6140

Topics

* Assumptions of the linear regression model
* Patterns in residual plots

* Assessing normality of residuals

* Diagnosing non-constant variance

* Unusual data: Leverage & Influence

* Partial plots

Sometimes a few “bad” points can
ruin a theory (Duncan data)

Sometimes, they can help suggest
a better one (Fuel data)

What is a regression model?

* A model is a merely a representation / description of reality.

* Aregression model specifies how a quantitative variable (Y) is
related to other variables (Xs), with certain assumptions.

*  Butreality is often too complicated to be perfectly represented /
described.

= All models are wrong — or simply partial descriptions.

=  That's OK: we don’t need perfect models — just adequate ones.

= But, we do need to make sure that inferences / conclusions are correct!
We should try to formulate models that closely represent reality.
1. Fitthe model

2. Check assumptions

3. If necessary, modify model, go back to 1.

Linear regression model

* Model:
Yi=Fy+ LXK+ Lo X+ + B X, + &

* Assumptions:

= Linearity: Predictors (possibly transformed) are linearly related
to the outcome, y. [This just means linear in the parameters.]

= Specification: No important predictors have been omitted; only
important ones included. [This is often key & overlooked.]

= The “holy trinity”; i Tiid N(0,0%)
* Independence: the errors are uncorrelated
* Homogeneity of variance: Var(g;) = % = constant
* Normality: g have a normal distribution




Model fitting & model criticism

* Bad news:

= Any statistical model we fit is probably wrong (or incomplete).

= Hope for a decent summary & valid inference.

Good news:

= |nfo about the “explained” portion — fitted values

= |nfo about the “unexplained” portion — residuals
Residual plots help to guide us:

= Model assumptions: NQQ plots, spread vs. level plots

= Model specifications: partial residual plots (Y, X; | other Xs)
Other problems:

= Qutliers, leverage — Influence plots

Why look at residuals?

Our model claims that values of Y are the result of two components:

error or individual

differences
r /\7\ F)\T
Yi =Bo +ByX +¢

The model does not say that nothing else is related to Y.
Only that-- anything else is random, not systematic

The remaining part — the residual -- is considered as random error or
individual differences.

Since we think that there is nothing systematically related to Y
beyond X,

= if there are any other variables available to us, we should explore the
relationship between such variables and e.

Patterns in residual plots

* Residual plots show what
has not yet been
accounted for in a model

* As such, they offer an
opportunity to learn
something more.

* Sometimes, we can truly
be happy, learning
something not shown in
model summaries.

* Need to know what to
"It's a non-linear pattern with IOOk for

Treakment effect(4)

outliers..... but for some reason
I'm very happy with the data.”

Patterns in residual plots
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Patterns in residual plots
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More common, but usually less pronounced than these cartoons

Patterns in residual plots
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More subtle patterns, often better revealed by other plots
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Patterns in residual plots
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More subtle still: need to think about what not yet included
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Running example: Duncan data

* Duncan (1961) studied how well one could predict

occupational prestige (hard to measure) from available
census measures

= Income: proportion of males in an occupation with
income > $3500 in 1950 census

® Educ: proportion of males with >= high school

= Prestige: % of people rating an occupation as “good”
or “excellent” (survey of 3000 people)

* [ssue: relative effects of Income & Educ --- are they
equally important as determinants of occ. Prestige?
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Statistical results:

® Model fits well (R2 = 0.83)

® Income & educ both significant (& approx. equal!)
® What's not to like?

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 2 36181 18090 101.22 <.0001
Error 42 7506.70 178.73
Corrected Total 44 43688
Root MSE 13.369 R-Square 0.8282
Dependent Mean 47.689 AdjR-Sq 0.8200
Parameter Estimates
Parameter Standard
Variable Label DF Estimate Error t Value Pr>|t|
Intercept Intercept 1 -6.065 4.27194 -1.42 0.1631
income Income 1 0.599 0.11967 5.00 <.0001
educ Education 1 0.546 0.09825 5.56 <.0001

Pearson residuals

library(car)

data("Duncan", package="car")

duncan.mod <- Im(prestige ~ income + education, data=Duncan)
# basic residual plots

residualPlots(duncan.mod, layout=c(1,3), id.n=2)

All residual plots look OK (~flat). But two points have large residuals
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Smoothing is often essential to see the overall trend, particularly with small N

13 Automatic labeling of unusual points is helpful too. 14
In R, always good to “plot the model” first — the regression quartet : . .
Assessing normality of residuals
plot(duncan.mod) @ ®)
w5 Fitled Marmal (3.0
) e L * The linear model does not require y to be normally
These help to diagnose: L N g7 T distributed— only the errors, €
(a) Systematic residuals? 3 ERPERTY T E T o ] o .
(b) Normality? g o1 5" o o & * Neither are quantitative Xs required to be normal
(c) Heterogeneous variance? =l . - i . . . .
(d) Influential observations? PR L e but highly skewed Xs may cause other problems— non-linearity
A L1 * Practical impact of violation of normality of € :
I'll take up the details of each - Rl“::;‘:";iﬁj::ge = Univariate tests of normality (e.g., K-S test) are highly sensitive
next. o - " e to small departures; don't need exact normality
There are better versions of : O R = small effect on p-values, unless highly non-normal
these plots in other 3 ¢ e |3 ] = High kurtosis — long tails (outliers) more a threat than skewness
packages (car), but this g & o 32 - . o . .
should be a first step EE1 e o0 TR i * — Graphical method (NQQ plot) sufficient in practice
N 24 ’ i @ 1 C‘;‘M"‘Jmame. B
(C) I Fitted values (d) .' Leverage .
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Assessing normality: NQQ plots

® standard NQQ plot: plot sorted residuals, ey; vs. z; = quantiles in a N(0,1)
distribution— should follow a 45° line

® Better: show confidence envelope for assessing departures
" Better yet: detrended version plots (e, — z;) vs. z; — should follow a flat line

irom fit of O
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macro ;

is from fit of O

| Prestigs

R: car::qgPlot

Deviation From Nermal
v o ‘,"
j
4
¥ .. Y
% .

STUDENTIZED RESIDUAL
| )

Diagnosing non-constant variance

e Usual method: plot residuals vs. fitted values: look for

differences in residual variance

OK

17 18
Normal Quantils Nermal Quantils
Dlagnosmg non-constant variance Dlagnosmg non-constant variance
* This doesn’t always work, e.g., if the distribution of _ :
predicted values is highly skewed, the plot can be * Better: plot absolute value, |e| vs. predicted, w/
misleading due to number of observations. smoothed curve to show variation
_ The smooth should be flat =
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Correcting non-constant variance

* As always, two options:
= Transformy to make o2 ~ constant
= Fit a more general model that allows o? to vary with E(y|x)— a
generalized linear model (E.qg.,: logistic regression, poisson
regression)
* For now, the transformation route is easier— stays within
the classical linear model

* A spread-level plot gives an easy way to find a power
transformation, if spread varies with level

Spread-Level plots: theory

Commonly used variance stabilizing techniques

Relationship of 0% to I/

[y] Transformation

comment

o2 ~ constant

o x Ely
o x Ely)(1 - Ely])
o o (Ely])?

o x (Bly))*

o x (Efy))*

Y=y

y' = VY

y' = sin™H(/Y)
y' = log(y)

yr _ y—lj2

Y =y !

no transformation
Poisson data
binomial proportions,
y >0

y >0

These suggest: transformy

o < E[y]° = log(c) o« b-log(E[y])

with the power p = 1-b

Thus, plot log(spread) vs. log(level) & use 1-slope as the power

(Works if the plot is reasonably linear)

(Proportions require something different— folded power transformations)

m Artificial data, generated so that o ~ z: Power = 0 — analyze log(y) 23

21 22
Spread'l—evel pIOtS This method doesn’t work for the Duncan data, because log (spread) is not
linearly related to log (fitted value)
m Spread vs. level plots: Plot log(|e;| /&) vs. log(x)
m If linear, with slope b, transform y — yP, withp =1 — b. Spread-Level Plot f
P - - E spreadLevelPlot(duncan.mod) preguncea\:fmog o
1
Suggested power transformation: 0.865 . .' g
SAS: spredplot macro - o . i.e., no power transform helps § -1° N -
Slope: : ., o @ »
R: Power: 0 . e o % s . *
car::spreadLevelPlot() — oA . B LT The loess smoothed curve shows that x . .
5 J: ¢ _-"_.'_5_ -"_-' - residual variance is not constant, but a 2. .
W -, . L power transformation can’t cure this. g 54
= w F o e e g °
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g . . . . - ) 5 o
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Baseball data: scale-location plot

data("Baseball", package="vcd")

bb.mod <- Im(sal87 ~ years + hits + runs + homeruns,

data=Baseball)
# standard plot method

car:..spreadlLevelPLot

Spread-level plot for a model object:

data("Baseball", package="vcd")
bb.mod <- Im(sal87 ~ years + hits + runs + homeruns,
data=Baseball)

. Scale-Localion library(car) Spread-Level Plot for
plot(bb.mod, which=3, pch=16, lwd=2) sz20 spreadLevelPlot(bb.mod, pch=16) bb.mod
S e . . zie # show smooth fit 2 '
fit <- fitted(bb.mod) 8 .
: - " T res <- abs(rstudent(bb.mod)) w o
This plot shows that residual variance 3 lines(loess.smooth(fit, res), col="blue", lwd=2) E
increases with fitted value 3 & B3
It doesn’t diagnose a corrective power ; 1 This gives: % 8
transformation, but: 2 Suggested power transformation: & -
2 1 0.261 £ s
Increasing — p < 1 (down scale of i.e., log(y) or y 5 °
powers) S | N . |
EOIO 10:]0 15‘00 s | - | | | |
Fitted values 100 200 500 1000 2000
Inisald s - years + hils + runs + homeruns) 28 29
Fitted Values
U I d t - L & | ﬂ Effect of adding one more point (new line in blue):
nusual data. Leverage nriuence
y. - y.
. . ?0_ Criginal data e Low leverage, Og‘tjie[.
* “Unusual” observations can have dramatic effects on ol .
least-squares estimates in linear models ol e o
* Three archtypical cases: | e
40 P 40
= Typical X (low leverage), bad fit -- Not much harm 1 e
= Unusual X (high leverage), good fit -- Not much harm * ) * .
= Unusual X (high leverage), bad fit -- BAD, BAD, BAD W e
* Influential observations: unusual in both X & Y , ’ , ’
‘g T High1 d it T high outli
° Heurlstlc formUIa: igh leverage, good fi 1 igh leverage, Outlier
60 il 601
Influence = X leverage x Y residual
50 507
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Dramatic example: Davis’ data on reported and measured weight of men
and women

Self-Reports of Height and Weight

Reported weight in Kg

This one bad point is both
of high leverage (X) and
has a huge residual (Y)

2“ [Sex of subject _seeF  ooem

20 40 &80 20 100 120 140 180 180
Measured weight in Kg

Unusual points also affect precision of estimates:
« OL: biases slope & increases std. error

* O: no bias, but increases std. error

* L: decreases std. error (“good leverage” point)

¥
80+

20

10 90
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Measuring leverage

m Leverage: measured by “Hat values,” /.

m so-called because fitted values can be expressed as iy = Hy
m For simple linear regression, h; ~ (z — )2

m For p predictors, 1; 4 squared distance of x; from centroid, & (Mahalanobis

squared distance) B
m All hat values range from 1lfu_.to 1, and average is i1 = (p+1)/n.
B — observations with i; > 2h (or I; > 3% in small samples) are typically

H (1] ” H
considered “high leverage” points Y © | -

® In general, leverage is ~ Mahalanobis
squared distance for the predictors from
their means

T1

contoue o
Conthamt levevaqe

Detecting outliers: Studentized residuals

m Ordinary residuals: ¢; = y;

m Even if errors, €; have constant variance (as assumed), residuals do not—

variance of e; varies inversely with leverage— Var(e; ) = er[_'l — i)

m Outliers on Y pull the regression line (surface) toward them

— ¥, not useful because:

m Studentized residuals:
m Standardized residual (RSTUDENT) calculated for 1; deleting observation i.
Using subscript (—i) to mean deleting ¢,

% [
RSTUDENT = ¢; =

s~V 1—h;
m Gives a test for “mean-shift” outlier model, Ho : £(y; | X) # E(y(—i) | X)
mel ~tn—p—2)
o — e} > t_q/a(n — p — 2) signifcant a priori
o — |ef| > ti_a2n(n — p — 2) signifcant a posteriori (Bonferroni)
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Ordinary residuals

20—

Clearly, we have a very|
influential observation,
yet residual is

' } not big at all,
5 because LS
makes it small!

Studentized residuals |

80—
60—
40—

20—

Studentized
e residual ignores
i that point

Influence = Leverage x Residual

m Cook’s D: Scale-invariant (squared) measure of “distance” between (3 (all) and

B(—i) (deleting obs. )

2

i y s
(p+1)s2 1—h2
m “Large’ values: D; > 4/nfor D; > 4/(n—p —1)]

COOKD; = D; = (

m DFFITS: Scaled measure of (signed) change in predicted value for 1;, deleting

obs. i -
Ui — Y(—1) €; "hi
DFFITS; = 2 YD :( 1 ) x L

S(—1) \/'Jri.z H(_z'.) 1 hi

m “Large’ values: |DFFITS;| > 2\/(p +1)/n
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Example: Consider the circled observation

Change in by: 1.0
Change in b;: -1.1

100

80—

60—

40—

20—

Changein §:-1.2

Low influence — a “good”
leverage point

Change in b,: 6.8
Change in b;: -7.8

100

80—

60—

40—

20—

I
2 4 6 8 10

Changeiny:-8.2

High influence — a “bad”

leverage point
gep 38

Influence diagnostics with SAS

m PROC REG

m influence option on model statement gives printed values

(ODS GRAPHICS — regression diagnostic plots)

m inflplot macro

m Fits model using PROC REG, influence statistics — output dataset

m Plots RSTUDENT vs. Hat value, bubble size ~ Cook’s D or DFFITS

m Labels “noteworthy” observations— large RSTUDENT and/or Hat value
m Shows nominal cutoffs for “unusual” values

m Similar macros

m inflogis macro— logistic regression (PROC LOGISTIC)
m inflglim macro— generalized linear models (PROC GENMOD)

See: http://www.math.yorku.ca/SCS/sssg/inflplot.html
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Example: Duncan’s Occupational prestige data

ra

w

"

PROC REG step, with inf luence option

|duncinf12‘sas e

%include datal(duncan);
proc reg data=duncan;
model prestige = Income Educ / influence;
id job;
run;

inflplot macro:

‘ e duncinf12‘5a3|
title ’Duncan data: Influence Plot”;

7| title2 "Bubble size: Cook’s Distance';

%inflplot (data=duncan,

y=Prestige, /* response */
x=Income Educ, /¥ predictors */
id=job, /* ID wariable */

bubble=cookd /* bubble ~ Cook’s D */

Duncan data: Influence Plot
Bubble size: Cook's Distance
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Showing contours of Cook’s D:

Duncan Occupational Prestige Data
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Example: Duncan’s Occupational prestige data

Influence on coefficients is substantial:

m Alln = 45 cases
Parameter Estimates
Parameter | Standard
Variable Label DF Estimate Error t Value Pr > |t|
Intercept Intercept 1 -6.06466 4,27194 -1.42 0.1631
income Income 1 0.59873 0.11967 5.00 <.0001
educ Education 1 0.54583 0.09825 5.56 <.0001
m Deleting Minister, RR Conductor, RR Engineer
Parameter Estimates
Parameter | Standard
Variable Label DF Estimate Error t Value Pr > |t|
Intercept Intercept 1 -6.31736| 3.67962 -1.72 0.0939
income Income 1 0.93066 0.15375 6.05 <,0001
educ Education 1 0.28464 0.12136 2.35 0.0242
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Patterns in residual plots:
Marginal vs. partial relations

2 * For a one predictor model, this plot is
c helpful.

4| o e

o
? ° a v o, ® But with two+ predictors, such plots
D e o R 5 °°.§‘ only show the marginal relationships
K < '——o—o—a—aj A (ignoring other Xs)
[+
] [+]

- ’ ® The multiple regression model is

s about partial relationships — controlling

, for other Xs
ddka s curvilnear

*— We need to see the partial relation
between Y and X;, holding other Xs
constant.

—5 Tarsform
(ov add YT Yo modd)

Partial regression plots

m Problems

m Correlated predictors— Ordinary scatterplots cannot show the unique effects of
one predictor, controlling for others

m Joint influence— Single deletion diagnostics cannot show whether sets of
observations are jointly influential, or offset each other

m Solution: Partial regression (added-variable) plots

m For xy, plot i | other as vs. xy. | other ws. (others = X [—k])

y | others = y Y — YX[-k

xp|others =2 = = —Tx[_y

m Yy} = residuals from regression of iy on X [—F|
m x} = residuals from regression of x;;, on X [—F]
® — unique relation of Y to @}, controlling/adjusting for all other xs.

46 47
m slope of y,{, on ';r,ﬁ, = by., the estimate of the (partial) regression coefficient, /7., in
the full model. PROC REG step, with partial option — printer plots
m residuals from the regression line in this plot = residuals for i in the full model, i.e., | duncan4.sas ---
yp =bpxp + e 1| %include data(duncan);
:| proc reg data=duncan;
m simple correlation between ¥}, and @}, = partial correlation between 1 and ;. with 3 model prestige = Income Educ / partial;
the other a variables partialled out or controlled. 4 id job;
m plot shows partial leverage (~ .}';}‘,2) and influence 5 Tum,
- “&‘&“ﬂn‘i“dﬁd‘i& x*% - partiol leverage Mué“‘ partial macro: high-res plots
; model P — b , _ | .-+ duncan4.sas |
Q(‘j fd"w\\ ' _ a e el ¢| hpartial (data=duncan,
%/ Residol ; s : yvar=Prestige, /* response */
reludim I Formlokiow behoee- .
i -m.cw% - e e i 8 xvar=Income Educ, /* predictors */
w % SRR Fa e 8 o|  id=job, /* ID variable  #/
i B " & il pacomE 10 label=INFL /% label influential pts */
-‘?le}l“ mcg,uE 2 : / : . controlled " ) ;
v o
PR e e
~.'J.’;]o“~£r _rl‘> e a K ) e 3 49
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m Minister and RR Conductor are jointly influential— decrease slope for Income
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car::avPlots 3D viev:
Observations and Fitted Response Surface
Prestige
108 F—
duncan.mod <- Im(prestige ~ income + education, data=Duncan)
avPlots(duncan.mod, id.n=2, ellipse=TRUE, ...)
Added-Variable Plots ] -
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3D view:

Deleting 3 influential cases

Prestige
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0 100 Education|

How to handle influential cases

Observations in error, or from an extraneous population
= delete or exclude them ?
= Recall that in the fuel data, outliers suggested a better model!

Robust methods — fit using a method that down-weights
outliers

= SAS: PROC ROBUSTREG

= R:MASS::rIm(); robust::ImRob()

Sensitivity analysis — effect on your conclusions?
= Compare Q, vs Q; for any statistic, Q
= Are there likely to be more observations like x; in future samples?

= Duncan data: Minister, RR Conductor clearly special — report
main results excluding them, footnote Q,,
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Summary

* Fitting a model is just the first step
* Need to check whether assumptions are satisfied

= If not, revise/change the model, or transform/modify
the data

* Residuals: what you have not (yet) accounted for!

* Residual plots are your friend
* Residuals vs. X or fitted Y: patterns?
= NQQ plots to check for normality
= Spread-level plots to check for constant variance
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Summary

Outliers & influential observations

= Distinguish between “good leverage” points and “bad
leverage” points

* Influence = X-Leverage x Y-residual

= Influence plots show effects of both

Partial regression (added variable) plots

= Show the relation of Y to X;, controlling for all other Xs
= Help you see exactly what the model is fitting

= Visualize how and why observations are influential
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