
Regression diagnostics
(I thought I was done when I fit the model)

Psychology 6140
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Topics
• Assumptions of the linear regression model
• Patterns in residual plots
• Assessing normality of residuals
• Diagnosing non-constant variance
• Unusual data: Leverage & Influence
• Partial plots

Sometimes a few “bad” points can 
ruin a theory (Duncan data)

Sometimes, they can help suggest 
a better one (Fuel data)
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What is a regression model?

• A model is a merely a representation / description of reality.
• A regression model specifies how a quantitative variable (Y) is 

related to other variables (Xs), with certain assumptions.

• But reality is often too complicated to be perfectly represented / 
described.

All models are wrong – or simply partial descriptions.
That’s OK: we don’t need perfect models – just adequate ones.
But, we do need to make sure that inferences / conclusions are correct!

• We should try to formulate models that closely represent reality.
1. Fit the model
2. Check assumptions
3. If necessary, modify model, go back to 1.
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Linear regression model
• Model:

• Assumptions:
Linearity: Predictors (possibly transformed) are linearly related 
to the outcome, y.  [This just means linear in the parameters.]
Specification: No important predictors have been omitted; only 
important ones included. [This is often key & overlooked.]

The “holy trinity”: 
• Independence: the errors are uncorrelated
• Homogeneity of variance: Var( i) = 2 = constant
• Normality: i have a normal distribution
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Model fitting & model criticism
• Bad news: 

Any statistical model we fit is probably wrong (or incomplete). 
Hope for a decent summary & valid inference.

• Good news: 
Info about the “explained” portion 
Info about the “unexplained” portion 

• Residual plots help to guide us:
Model assumptions: NQQ plots, spread vs. level plots
Model specifications: partial residual plots (Y, Xi | other Xs) 

• Other problems:
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Why look at residuals?
• Our model claims that values of Y are the result of two components:

The model does not say that nothing else is related to Y.
Only that-- anything else is random, not systematic
The remaining part – the residual -- is considered as random error or 
individual differences.

• Since we think that there is nothing systematically related to Y
beyond X, 

if there are any other variables available to us, we should explore the 
relationship between such variables and e.

iii xy 10

X’s contribution 
(regression line)

error or individual 
differences
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Patterns in residual plots
• Residual plots show what 

has not yet been
accounted for in a model

• As such, they offer an 
opportunity to learn 
something more.

• Sometimes, we can truly 
be happy, learning 
something not shown in 
model summaries.

• Need to know what to 
look for
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Patterns in residual plots

Patterns like these rarely occur, except in hand calculations or excel
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Patterns in residual plots

More common, but usually less pronounced than these cartoons 10

Patterns in residual plots

More subtle patterns, often better revealed by other plots
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Patterns in residual plots

More subtle still: need to think about what not yet included 12

Running example: Duncan data
• Duncan (1961) studied how well one could predict 

occupational prestige (hard to measure) from available 
census measures

Income: proportion of males in an occupation with 
income > $3500 in 1950 census
Educ: proportion of males with >= high school
Prestige: % of people rating an occupation as “good” 
or “excellent” (survey of 3000 people)

• Issue:  relative effects of Income & Educ --- are they 
equally important as determinants of occ. Prestige?
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Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 36181 18090 101.22 <.0001

Error 42 7506.70 178.73

Corrected Total 44 43688

Root MSE 13.369 R-Square 0.8282

Dependent Mean 47.689 Adj R-Sq 0.8200

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 -6.065 4.27194 -1.42 0.1631

income Income 1 0.599 0.11967 5.00 <.0001

educ Education 1 0.546 0.09825 5.56 <.0001

Statistical results:
Model fits well (R2 = 0.83)
Income & educ both significant (& approx. equal!)
What’s not to like?
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library(car)
data("Duncan", package="car")
duncan.mod <- lm(prestige ~ income + education, data=Duncan)
# basic residual plots
residualPlots(duncan.mod, layout=c(1,3), id.n=2)

All residual plots look OK (~flat).  But two points have large residuals

Smoothing is often essential to see the overall trend, particularly with small N
Automatic labeling of unusual points is helpful too.
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regression quartet 

plot(duncan.mod)

These help to diagnose:
(a) Systematic residuals?
(b) Normality?
(c) Heterogeneous variance?
(d) Influential observations?

I’ll take up the details of each 
next.

There are better versions of 
these plots in other 
packages (car), but this 
should be a first step

(a) (b)

(c) (d)
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Assessing normality of residuals

• The linear model does not require y to be normally 
distributed– only the errors, 

• Neither are quantitative Xs required to be normal 
but highly skewed Xs may cause other problems– non-linearity

• Practical impact of violation of normality of :
Univariate tests of normality (e.g., K-S test) are highly sensitive 
to small departures; don’t need exact normality
small effect on p-values, unless highly non-normal
High kurtosis – long tails (outliers) more a threat than skewness

• Graphical method (NQQ plot) sufficient in practice 
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Assessing normality: NQQ plots

standard NQQ plot: plot sorted residuals, e[i] vs. zi = quantiles in a N(0,1) 
distribution– should follow a 45o line

Better: show confidence envelope for assessing departures
Better yet: detrended version plots (e[i] – zi) vs. zi – should follow a flat line

SAS: nqplot
macro

R: car::qqPlot
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Diagnosing non-constant variance

• Usual method: plot residuals vs. fitted values: look for 
differences in residual variance

OK

Not OK

Not OK
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Diagnosing non-constant variance
• This doesn’t always work, e.g., if the distribution of 

predicted values is highly skewed, the plot can be 
misleading due to number of observations.
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Diagnosing non-constant variance

• Better: plot absolute value, |ei| vs. predicted, w/ 
smoothed curve to show variation

Here, occupational prestige 
is a proportion, and 

Is maximal at p=0.5

This suggests a 
transformation:
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The smooth should be flat
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Correcting non-constant variance

• As always, two options:
Transform y to make 2 ~ constant
Fit a more general model that allows 2 to vary with E(y|x)– a
generalized linear model (E.g.,: logistic regression, poisson
regression)

• For now, the transformation route is easier– stays within 
the classical linear model

• A spread-level plot gives an easy way to find a power 
transformation, if spread varies with level
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Spread-Level plots: theory

• These suggest: transform y
with the power p = 1-b

• Thus, plot log(spread) vs. log(level) & use 1-slope as the power 
• (Works if the plot is reasonably linear)
• (Proportions require something different– folded power transformations)
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Spread-Level plots

SAS: spredplot macro

R: 
car::spreadLevelPlot()
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This method doesn’t work for the Duncan data, because log (spread) is not 
linearly related to log (fitted value)

spreadLevelPlot(duncan.mod)
Suggested power transformation:  0.865 

The loess smoothed curve shows that 
residual variance is not constant, but a 
power transformation can’t cure this. 

As suggested earlier, a better analysis 
would have used  a logit or arcsine 
transform of prestige to stabilize variance

i.e., no power transform helps

NB: both are plotted on log scales



data("Baseball", package="vcd")
bb.mod <- lm(sal87 ~ years + hits + runs + homeruns, 
             data=Baseball)
# standard plot method
plot(bb.mod, which=3, pch=16, lwd=2)

Baseball data: scale-location plot
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This plot shows that residual variance 
increases with fitted value

It doesn’t diagnose a corrective power 
transformation, but:

powers)

data("Baseball", package="vcd")
bb.mod <- lm(sal87 ~ years + hits + runs + homeruns, 
             data=Baseball)
library(car)
spreadLevelPlot(bb.mod, pch=16)

# show smooth fit
fit <- fitted(bb.mod)
res <- abs(rstudent(bb.mod))
lines(loess.smooth(fit, res), col="blue", lwd=2)

car::spreadLevelPLot

292

This gives:
Suggested power transformation:  
0.261
i.e., log(y) or y1/4

Spread-level plot for a model object:
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Unusual data: Leverage & Influence

• “Unusual” observations can have dramatic effects on 
least-squares estimates in linear models

• Three archtypical cases:
Typical X (low leverage), bad fit        -- Not much harm
Unusual X (high leverage), good fit   -- Not much harm
Unusual X (high leverage), bad fit     -- BAD, BAD, BAD

• Influential observations: unusual in both X & Y
• Heuristic formula:

Influence = X leverage x Y residual
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Effect of adding one more point (new line in blue):
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Dramatic example: Davis’ data on reported and measured weight of men 
and women

This one bad point is both 
of high leverage (X) and 
has a huge residual (Y)
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Unusual points also affect precision of estimates:
• OL: biases slope & increases std. error
• O: no bias, but increases std. error
• L: decreases std. error (“good leverage” point)
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Measuring leverage

In general, leverage is ~ Mahalanobis 
squared distance for the predictors from 
their means
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Detecting outliers: Studentized residuals
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Clearly, we have a very 
influential observation,

yet residual is 
not big at all, 
because LS 
makes it small!
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residual ignores 
that point

Ordinary residuals

Studentized residuals
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Influence = Leverage x Residual
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Change in b0:  6.8
Change in b1: -7.8

Change in b0:  1.0
Change in b1: -1.1

Change in    : -8.2Change in    : -1.2ŷ

Example: Consider the circled observation

ŷ

Low influence – a “good” 
leverage point

High influence – a “bad” 
leverage point
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Influence diagnostics with SAS

(ODS GRAPHICS 
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Example: Duncan’s Occupational prestige data
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Example: Duncan’s Occupational prestige data
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Patterns in residual plots: 
Marginal vs. partial relations

• For a one predictor model, this plot is 
helpful.

• But with two+ predictors, such plots 
only show the marginal relationships 
(ignoring other Xs)

• The multiple regression model is 
about partial relationships – controlling 
for other Xs

• partial relation
between Y and Xi, holding other Xs 
constant.
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Partial regression plots
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Partial regression plots: Properties
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Partial regression plots: Example
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car::avPlots
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duncan.mod <- lm(prestige ~ income + education, data=Duncan)
avPlots(duncan.mod, id.n=2, ellipse=TRUE, …)
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How to handle influential cases
• Observations in error, or from an extraneous population

delete or exclude them ?
Recall that in the fuel data, outliers suggested a better model!

• Robust methods – fit using a method that down-weights 
outliers 

SAS: PROC ROBUSTREG
R: MASS::rlm(); robust::lmRob()

• Sensitivity analysis – effect on your conclusions?
Compare Qall vs Q(-i) for any statistic, Q
Are there likely to be more observations like xi in future samples?
Duncan data:  Minister, RR Conductor clearly special – report 
main results excluding them, footnote Qall
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Summary

• Fitting a model is just the first step
Need to check whether assumptions are satisfied
If not, revise/change the model, or transform/modify 
the data

• Residuals: what you have not (yet) accounted for!
• Residual plots are your friend

Residuals vs. X or fitted Y: patterns?
NQQ plots to check for normality
Spread-level plots to check for constant variance
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Summary

• Outliers & influential observations
Distinguish between “good leverage” points and “bad 
leverage” points
Influence = X-Leverage  x  Y-residual
Influence plots show effects of both

• Partial regression (added variable) plots
Show the relation of Y to Xi, controlling for all other Xs
Help you see exactly what the model is fitting
Visualize how and why observations are influential


