

Regression diagnostics (I thought I was done when I fit the model)

Psychology 6140

Topics

- Assumptions of the linear regression model
- Patterns in residual plots
- Assessing normality of residuals
- Diagnosing non-constant variance
- Unusual data: Leverage & Influence
- Partial plots

Sometimes a few "bad" points can ruin a theory (Duncan data)

Sometimes, they can help suggest a better one (Fuel data)

What is a regression model?

- A model is a merely a representation / description of reality.
- A regression model specifies how a quantitative variable (Y) is related to other variables (Xs), with certain assumptions.
- But reality is often too complicated to be perfectly represented / described.
 - All models are wrong or simply partial descriptions.
 - That's OK: we don't need perfect models just adequate ones.
 - But, we do need to make sure that inferences / conclusions are correct!
- We should try to formulate models that closely represent reality.
 - 1. Fit the model
 - 2. Check assumptions
 - 3. If necessary, modify model, go back to 1. -

Linear regression model

• Model:

$$\mathbf{y}_i = \beta_0 + \beta_1 \mathbf{X}_{i1} + \beta_2 \mathbf{X}_{i2} + \dots + \beta_p \mathbf{X}_{ip} + \varepsilon_i$$

- Assumptions:
 - Linearity: Predictors (possibly transformed) are linearly related to the outcome, y. [This just means linear in the parameters.]
 - Specification: No important predictors have been omitted; only important ones included. [This is often key & overlooked.]
 - The "holy trinity": $\mathcal{E}_i \sim_{iid} \mathcal{N}(0,\sigma^2)$
 - Independence: the errors are uncorrelated
 - Homogeneity of variance: $Var(\varepsilon_i) = \sigma^2 = constant$
 - Normality: ε_i have a normal distribution

3

Model fitting & model criticism

- Bad news:
 - Any statistical model we fit is probably wrong (or incomplete).
 - Hope for a decent summary & valid inference.
- Good news:
 - Info about the "explained" portion \rightarrow fitted values
 - Info about the "unexplained" portion \rightarrow residuals
- Residual plots help to guide us:
 - Model assumptions: NQQ plots, spread vs. level plots
 - Model specifications: partial residual plots (Y, X_i | other Xs)
- Other problems:
 - Outliers, leverage → Influence plots

Why look at residuals?

• Our model claims that values of Y are the result of two components:

- The model does not say that nothing else is related to Y.
- Only that-- anything else is random, not systematic
- The remaining part the residual -- is considered as random error or individual differences.
- Since we think that there is nothing systematically related to Y beyond X,
 - if there are any other variables available to us, we should explore the relationship between such variables and e.

Patterns in residual plots

"It's a non-linear pattern with outliers....but for some reason I'm very happy with the data."

- Residual plots show what has not yet been accounted for in a model
- As such, they offer an opportunity to learn something more.
- Sometimes, we can truly be happy, learning something not shown in model summaries.
- Need to know what to look for

Patterns in residual plots

5

Patterns in residual plots

More common, but usually less pronounced than these cartoons

Patterns in residual plots

More subtle patterns, often better revealed by other plots

Patterns in residual plots

Running example: Duncan data

- Duncan (1961) studied how well one could predict occupational prestige (hard to measure) from available census measures
 - Income: proportion of males in an occupation with income > \$3500 in 1950 census
 - Educ: proportion of males with >= high school
 - Prestige: % of people rating an occupation as "good" or "excellent" (survey of 3000 people)
- Issue: relative effects of Income & Educ --- are they equally important as determinants of occ. Prestige?

11

9

Statistical results:

- Model fits well (R² = 0.83)
- Income & educ both significant (& approx. equal!)
- What's not to like?

	Analysis of Vari	ance		
DF	Sum of Squares	Mean Square	F Value	Pr > F
2	36181	18090	101.22	<.0001
42	7506.70	178.73		
44	43688			
	DF 2 42 44	Analysis of Varia Sum of DF Squares 2 36181 42 7506.70 44 43688	Sum of Squares Mean Square 2 36181 18090 42 7506.70 178.73 44 43688 14	Sum of Mean DF Squares Square 2 36181 18090 101.22 42 7506.70 178.73 14

Root MSE	13.369	R-Square	0.8282
Dependent Mean	47.689	Adj R-Sq	0.8200

Parameter Estimates						
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	-6.065	4.27194	-1.42	0.1631
income	Income	1	0.599	0.11967	5.00	<.0001
educ	Education	1	0.546	0.09825	5.56	<.0001

13

library(car) data("Duncan", package="car") duncan.mod <- Im(prestige ~ income + education, data=Duncan) # basic residual plots residualPlots(duncan.mod, layout=c(1,3), id.n=2)

All residual plots look OK (~flat). But two points have large residuals

Smoothing is often essential to see the overall trend, particularly with small N Automatic labeling of unusual points is helpful too.

In R, always good to "plot the model" first \rightarrow the regression quartet

plot(duncan.mod)

These help to diagnose:

- (a) Systematic residuals?(b) Normality?
- (c) Heterogeneous variance?
- (d) Influential observations?

I'll take up the details of each next.

There are better versions of these plots in other packages (car), but this should be a first step

Assessing normality of residuals

- The linear model does not require y to be normally distributed— only the errors, ε
- Neither are quantitative Xs required to be normal
 - but highly skewed Xs may cause other problems-non-linearity
- Practical impact of violation of normality of ε :
 - Univariate tests of normality (e.g., K-S test) are highly sensitive to small departures; don't need exact normality
 - small effect on *p*-values, unless highly non-normal
 - High kurtosis long tails (outliers) more a threat than skewness
- \rightarrow Graphical method (NQQ plot) sufficient in practice

Assessing normality: NQQ plots

- standard NQQ plot: plot sorted residuals, e_[i] vs. z_i = quantiles in a N(0,1) distribution- should follow a 45° line
- Better: show confidence envelope for assessing departures
- Better yet: detrended version plots (e_[i] z_i) vs. z_i should follow a flat line

Diagnosing non-constant variance

• Usual method: plot residuals vs. fitted values: look for differences in residual variance

Diagnosing non-constant variance

 This doesn't always work, e.g., if the distribution of predicted values is highly skewed, the plot can be misleading due to number of observations.

Diagnosing non-constant variance

 Better: plot absolute value, |e_i| vs. predicted, w/ smoothed curve to show variation

The smooth should be flat Here, occupational prestige is a proportion, and $var(p) = \sqrt{p(1-p)/n}$ Is maximal at p=0.5 This suggests a transformation: $p \rightarrow \langle \log p/1-p \rangle$ (logit) $sin^{-1}\sqrt{p} \rangle$ (logit) (arcsin)

19

Correcting non-constant variance

- As always, two options:
 - Transform y to make σ² ~ constant
 - Fit a more general model that allows σ² to vary with E(y|x)– a generalized linear model (E.g.,: logistic regression, poisson regression)
- For now, the transformation route is easier
 – stays within the classical linear model
- A spread-level plot gives an easy way to find a power transformation, if spread varies with level

Spread-Level plots: theory

Commonly used variance stabilizing technique	Commonly	used	variance	stabilizing	technique
--	----------	------	----------	-------------	-----------

Relationship of σ^2 to $E[y]$	Transformation	comment
$\sigma^2 \propto {\sf constant}$	y' = y	no transformation
$\sigma^2 \propto E[y]$	$y' = \sqrt{y}$	Poisson data
$\sigma^2 \propto E[y](1 - E[y])$	$y' = \sin^{-1}(\sqrt{y})$	binomial proportions,
$\sigma^2 \propto (E[y])^2$	$y' = \log(y)$	y > 0
$\sigma^2 \propto (E[y])^3$	$y' = y^{-1/2}$	y > 0
$\sigma^2 \propto (E[y])^4$	$y' = y^{-1}$	

• These suggest: transform y with the power p = 1-b

$$\sigma \propto E[y]^b \Rightarrow \log(\sigma) \propto b \cdot \log(E[y])$$

- Thus, plot log(spread) vs. log(level) & use 1-slope as the power
- (Works if the plot is reasonably linear)
- (Proportions require something different– folded power transformations)

21

Spread-Level plots

Spread vs. level plots: Plot $\log(|e_i|/\hat{\sigma})$ vs. $\log(x)$ If linear, with slope *b*, transform $y \to y^p$, with p = 1 - b.

This method doesn't work for the Duncan data, because log (spread) is not linearly related to log (fitted value)

spreadLevelPlot(duncan.mod)

Suggested power transformation: 0.865

i.e., no power transform helps

The loess smoothed curve shows that residual variance is not constant, but a power transformation can't cure this.

As suggested earlier, a better analysis would have used a logit or arcsine transform of prestige to stabilize variance

Spread-Level Plot for

NB: both are plotted on log scales

Baseball data: scale-location plot

car::spreadLevelPLot

Spread-level plot for a model object:

data("Baseball", package="vcd") bb.mod <- Im(sal87 ~ years + hits + runs + homeruns, data=Baseball) library(car) spreadLevelPlot(bb.mod, pch=16)

show smooth fit

fit <- fitted(bb.mod) res <- abs(rstudent(bb.mod)) lines(loess.smooth(fit, res), col="blue", lwd=2)

This gives:

Suggested power transformation: 0.261 i.e., log(y) or y^{1/4}

Unusual data: Leverage & Influence

- "Unusual" observations can have dramatic effects on least-squares estimates in linear models
- Three archtypical cases:
 - Typical X (low leverage), bad fit -- Not much harm
 - Unusual X (high leverage), good fit -- Not much harm
 - Unusual X (high leverage), bad fit -- BAD, BAD, BAD
- Influential observations: unusual in both X & Y
- Heuristic formula:

Influence = X leverage x Y residual

Effect of adding one more point (new line in blue):

Unusual points also affect precision of estimates:

- OL: biases slope & increases std. error
- O: no bias, but increases std. error
- L: decreases std. error ("good leverage" point)

Measuring leverage

- **Leverage:** measured by "Hat values," *h_i*.
 - ullet so-called because fitted values can be expressed as $\widehat{y}=Hy$
 - For simple linear regression, $h_i \sim (x \bar{x})^2$
 - For p predictors, $h_i \not\cong$ squared distance of x_i from centroid, \bar{x} (Mahalanobis squared distance)
 - All hat values range from 1/n to 1, and average is $\bar{h} = (p+1)/n$.
 - → observations with $h_i > 2\bar{h}$ (or $h_i > 3\bar{h}$ in small samples) are typically considered "high leverage" points
- In general, leverage is ~ Mahalanobis squared distance for the predictors from their means

Detecting outliers: Studentized residuals

- Ordinary residuals: $e_i = y_i \hat{y}_i$, not useful because:
 - Even if errors, ϵ_i have constant variance (as assumed), residuals *do not*—variance of e_i varies inversely with leverage— Var $(e_i) = \sigma^2(1 h_i)$
 - Outliers on Y pull the regression line (surface) toward them
- Studentized residuals:
 - Standardized residual (RSTUDENT) calculated for *y_i* deleting observation *i*. Using subscript (−*i*) to mean deleting *i*,

$$\mathsf{RSTUDENT} \equiv e_i^\star = \frac{e_i}{s_{(-i)}\sqrt{1-h_i}}$$

Gives a test for "mean-shift" outlier model, $H_0: \mathcal{E}(y_i \mid X) \neq \mathcal{E}(y_{(-i)} \mid X)$

$$e_i^{\star} \sim t(n-p-2)$$
• $\rightarrow |e_i^{\star}| > t_{1-\alpha/2}(n-p-2)$ significant a priori

- $\rightarrow |e_i^{\star}| > t_{1-\alpha/2n}(n-p-2)$ signifcant a posteriori (Bonferroni)

34

Influence = Leverage x Residual

Cook's D: Scale-invariant (*squared*) measure of "distance" between β (all) and $\beta_{(-i)}$ (deleting obs. i)

$$\mathsf{COOKD}_i \equiv D_i = \left(\frac{e_i^2}{(p+1)s^2}\right) \times \frac{h_i}{1-h_i^2}$$

- "Large" values: $D_i > 4/n$ [or $D_i > 4/(n-p-1)$]
- DFFITS: Scaled measure of (signed) change in predicted value for y_i, deleting obs. i

$$\mathsf{DFFITS}_i = \frac{\hat{y}_i - \hat{y}_{(-i)}}{s_{(-i)}\sqrt{h_i}} = \left(\frac{e_i}{s_{(-i)}}\right) \times \frac{\sqrt{h_i}}{1 - h_i^2}$$

• "Large" values: $|\mathsf{DFFITS}_i| > 2\sqrt{(p+1)/n}$

37

Example: Consider the circled observation

Influence diagnostics with SAS

- **PROC** REG (ODS GRAPHICS \rightarrow regression diagnostic plots)
 - influence option on model statement gives printed values

inflplot macro

- \blacksquare Fits model using PROC $\,$ REG, influence statistics \rightarrow output dataset
- Plots RSTUDENT vs. Hat value, bubble size ~ Cook's D or DFFITS
- Labels "noteworthy" observations— large RSTUDENT and/or Hat value
- Shows nominal cutoffs for "unusual" values

Similar macros

38

- inflogis macro— logistic regression (PROC LOGISTIC)
- inflglim macro— generalized linear models (PROC GENMOD)

See: http://www.math.yorku.ca/SCS/sssg/inflplot.html

Showing contours of Cook's D:

Example: Duncan's Occupational prestige data

Influence on coefficients is substantial:

All n = 45 cases

			Parameter	Estimates		
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept income educ	Intercept Income Education	1 1 1	-6.06466 0.59873 0.54583	4.27194 0.11967 0.09825	-1.42 5.00 5.56	0.1631 <.0001 <.0001

Deleting Minister, RR Conductor, RR Engineer

			Parameter	Estimates			
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept income educ	Intercept Income Education	1 1 1	-6.31736 0.93066 0.28464	3.67962 0.15375 0.12136	-1.72 6.05 2.35	0.0939 <.0001 0.0242	45

Patterns in residual plots: Marginal vs. partial relations

• For a one predictor model, this plot is helpful.

• But with two+ predictors, such plots only show the <u>marginal</u> relationships (ignoring other Xs)

• The multiple regression model is about <u>partial</u> relationships – controlling for other Xs

• \rightarrow We need to see the partial relation between Y and X_i, holding other Xs constant.

46

Partial regression plots

Problems

- Correlated predictors— Ordinary scatterplots cannot show the unique effects of one predictor, controlling for others
- Joint influence— Single deletion diagnostics cannot show whether sets of observations are *jointly influential*, or *offset* each other

Solution: Partial regression (added-variable) plots

For x_k , plot $y \mid$ other xs vs. $x_k \mid$ other xs. (others $\equiv X[-k]$)

 $egin{array}{ll} y \mid ext{others} \equiv y_k^\star &= y - \hat{y}_{oldsymbol{X}[-k]} \ x_k \mid ext{others} \equiv x_k^\star &= x - \hat{x}_{oldsymbol{X}[-k]} \end{array}$

- y_k^\star = residuals from regression of y on X[-k]
- x_k^\star = residuals from regression of x_k on X[-k]
- $\blacksquare \rightarrow$ unique relation of y to x_k , controlling/adjusting for all other xs.

Partial regression plots: Properties

- slope of y_k^{\star} on $x_k^{\star} = b_k$, the estimate of the (partial) regression coefficient, β_k , in the full model.
- residuals from the regression line in this plot \equiv residuals for y in the full model, i.e.,

$$y_k^\star = b_k x_k^\star + \epsilon$$

- simple correlation between y_k^{\star} and x_k^{\star} = partial correlation between y and x_k with the other x variables partialled out or controlled.
- If plot shows *partial* leverage ($\sim x_{ik}^{\star 2}$) and influence

Partial regression plots: Example

PROC REG step, with <code>partial option</code> \rightarrow <code>printer plots</code>

	par orar madro. mgn ree plot		
		··· duncan4.sas	
6	%partial(data=duncan,		
7	yvar=Prestige,	/* response	*/
8	xvar=Income Educ,	/* predictors	*/
9	id=job,	/* ID variable	*/
10	label=INFL	/* label influential	pts */
11);		

47

How to handle influential cases

- Observations in error, or from an extraneous population
 - delete or exclude them ?
 - Recall that in the fuel data, outliers suggested a better model!
- Robust methods fit using a method that down-weights outliers
 - SAS: PROC ROBUSTREG
 - R:MASS::rlm(); robust::lmRob()
- Sensitivity analysis effect on your conclusions?
 - Compare Q_{all} vs Q_(-i) for any statistic, Q
 - Are there likely to be more observations like x_i in future samples?
 - Duncan data: Minister, RR Conductor clearly special report main results excluding them, footnote Q_{all}

Summary

- Fitting a model is just the first step
 - Need to check whether assumptions are satisfied
 - If not, revise/change the model, or transform/modify the data
- Residuals: what you have not (yet) accounted for!
- Residual plots are your friend
 - Residuals vs. X or fitted Y: patterns?
 - NQQ plots to check for normality
 - Spread-level plots to check for constant variance

Summary

- Outliers & influential observations
 - Distinguish between "good leverage" points and "bad leverage" points
 - Influence = X-Leverage x Y-residual
 - Influence plots show effects of both
- Partial regression (added variable) plots
 - Show the relation of Y to X_i, controlling for all other Xs
 - Help you see exactly what the model is fitting
 - Visualize how and why observations are influential

57

5