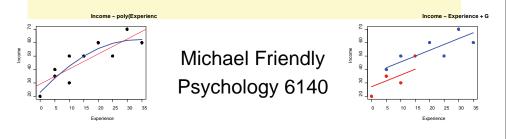


Multivariate Data Analysis: Overview



Why study multivariate data analysis?

- Multivariate data more common in research
- GLM approach: ANOVA, regression, etc. within a common framework: linear models

 $\mathbf{y}_i = \beta_0 + \beta_1 \mathbf{X}_{i1} + \beta_2 \mathbf{X}_{i2} + \dots + \beta_p \mathbf{X}_{ip} + \varepsilon_i$

- In matrix form ($\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{\epsilon}$), GLM extends to MANOVA, MMReg, etc.
- Idea of linear combinations extends readily to other methods: PCA, discriminant analysis, etc.
- Graphical methods, geometry \rightarrow Insight

Overview of Overview

- Today, I'm going to try to paint an overview of the content of the course with a very broad brush.
- The key ideas are:
 - Linear models (regression, ANOVA) extend directly to multivariate response data
 - Nearly all models involve linear combinations (weighted sums)
 - Models and data can be more easily understood with graphics
 - Statistical ideas have a visual representation in geometry
- Multivariate techniques can be classified by the attributes of
 - data (quantitative vs. categorical)
 - Numbers of predictors and response variables

2

Sample problem: workers' data

		Y	X1	X2	X3	
	Name	Income	Experience	Skill	Gender	I
1	Abby	20	0	2	Female	C
2	Betty	35	5	5	Female	5
3	Charles	40	5	8	Male	•
4	Doreen	30	10	б	Female	•
5	Ethan	50	10	10	Male	
6	Francie	50	15	7	Female	•
7	Georges	60	20	12	Male	
8	Harry	50	25	10	Male	v
9	Isaac	70	30	15	Male	
10	Juan	60	35	13	Male	

In truly multivariate data, we may have *several outcomes*:

- Income
- Job satisfaction
- Manager ratings
- etc.

How do these vary with predictors?

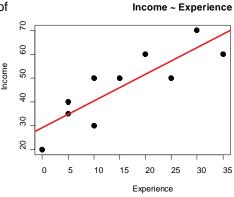
1. Linear models: Regression

Regression: understanding the relation of quantitative predictor(s) on a quantitative outcome.

Model: $E(y | x) = \beta_0 + \beta_1 x$ e.g. Income = 29 + 1.12 Experience

Parameters:

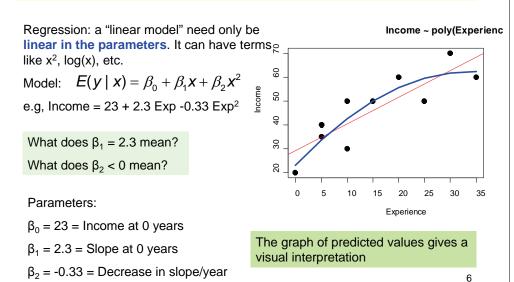
 $\beta_0 = 29 =$ Income at 0 years $\beta_1 = 1.12 =$ Increase / year = $\frac{\Delta y}{\Delta x}$



5

The regression line on the graph, and the fitted equation are just summaries. It is important to think about what they mean for a given problem!

Linear models: Regression



Linear models: Multiple regression

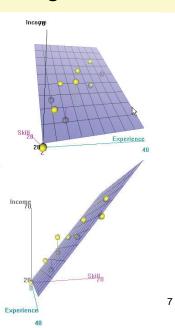
Regression models can have **any number** of linear predictors $\nabla (x + y) = 0$

Model: $E(y | x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ e.g, Income = 14.8 + 0.11 Exper + 3.4 Skill

Parameters:

 $\beta_0 = 14.8 =$ Income at 0 years, 0 skill $\beta_1 = 0.11 = \Delta$ Income / Δ Experience | Skill $\beta_2 = 3.4 = \Delta$ Income / Δ Skill | Experience

Control: The estimated effect for each predictor controls (adjusts) for all others in the model



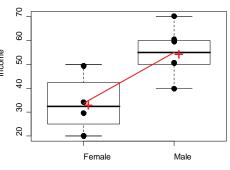
Linear models: ANOVA

ANOVA: How does mean of quantitative response vary with a discrete factor? Model: E(Y) = $\mu + \beta$ (G='Male') e.g., Income = 33.75 + 21.25 (G='Male') $(G = 'Male') = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} M \\ F \end{pmatrix}$

Parameters:

µ = 33.75 = Female mean Income

 $\beta = 21.25 =$ Increment for Male



Gender

Income ~ Gender

How would you describe this in words?

Linear models: Regression + Anova

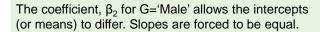
ANCOVA: Is there a difference in a factor, controlling for a quantitative predictor?

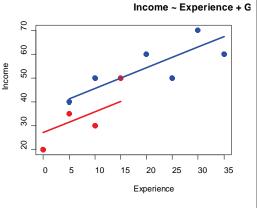
Homogeneity of regression: Are the regression lines for two or more groups the same? Are they parallel?

Model: $E(Y) = \mu + \beta_1 X_1 + \beta_2 (G='Male')$

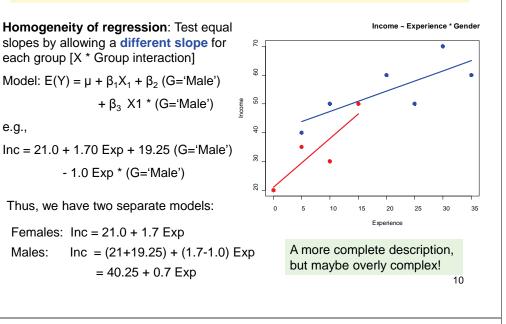
e.g.,

Inc = 27.27 + 0.86 Exp + 9.73 (G='Male')





Linear models: Regression + Anova

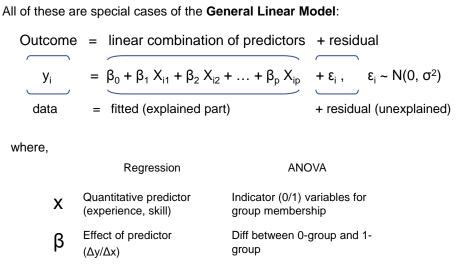


Linear models: Regression vs. ANOVA

	Regression	ANOVA
Dependent (response)	Quantitative	Quantitative
Independent (predictors)	Quantitative	Discrete factors
Concepts, statistics	Terms: X_1 , X_2 Interactions: $X_1 * X_2$ Linear hypotheses R^2 , coefficients	Main effects: A, B Interactions: A*B Contrasts F stats, factor effects

Regression and ANOVA are basically the same model, but use different terminology and emphasize different stats

General Linear Model (GLM)



11

General Linear Model (GLM)

They all become unified when cast in matrix terms:

$$\begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_n \end{pmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{x}_{11} & \cdots \\ \mathbf{1} & \mathbf{x}_{21} & \cdots \\ \vdots & \vdots & \vdots \\ \mathbf{1} & \mathbf{x}_{n1} & \cdots \end{bmatrix} \begin{pmatrix} \boldsymbol{\beta}_0 \\ \boldsymbol{\beta}_1 \\ \vdots \end{pmatrix} + \begin{pmatrix} \boldsymbol{\varepsilon}_1 \\ \boldsymbol{\varepsilon}_2 \\ \vdots \\ \boldsymbol{\varepsilon}_n \end{pmatrix}$$

or,

$\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times (p+1)}\mathbf{\beta}_{(p+1)\times 1} + \mathbf{\varepsilon}_{n\times 1}$

For all cases:

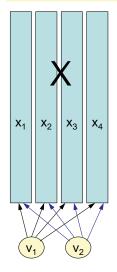
- parameter estimates, std. errors, etc. have the same form
- all hypothesis tests are special cases of H_0 : C $\beta = 0$
- methods extend directly to: multivariate Y, non-normal errors, etc.

2. Linear models & linear combinations

- All methods of multivariate statistics involve linear combinations of variables, with weights (coefficients) chosen to optimize some criterion (measure of fit)
- Methods differ according to:
 - 1 set of variables (PCA, FA) vs. 2+ sets (GLM, canonical correlation, discrim. analysis)
 - Nature of variables (2 sets):
 - Xs: discrete / continuous
 - Ys: discrete / continuous

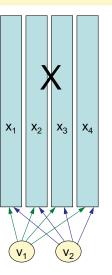
14

Linear combinations: 1 set of variables



PCA: find weights to maximize variance of $v_1, v_2, ...$ $v_1 = a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4$ $v_2 = b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4$ subject to: all v_i , v_j uncorrelated PCA: Linear combinations to maximize variance

Linear combinations: 1 set of variables

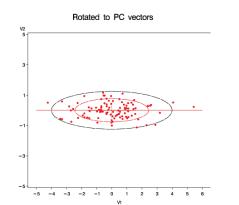


13

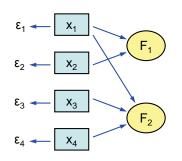
15

With p variables, p components account for 100% of variance, and correspond to a rotation of the variable space to uncorrelated components.

Goal in PCA is to account for most variance with k<<p components.



Factor analysis: Latent variables



factors to account for correlations among observed variables $x_1 = \lambda_{11} \; F_1 + \lambda_{12} \; F_2 + \epsilon_1$

FA: find weights for latent (unobserved)

$$x_2 = \lambda_{21} F_1 + \varepsilon_2$$

$$x3 = \lambda_{32} F_2 + \varepsilon_3$$

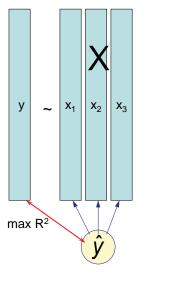
$$x4 = \lambda_{42} F_2 + \varepsilon_4$$

Differs from PCA in that **error variance** is taken into account.

FA can often give a simpler account with fewer factors or non-zero weights

17

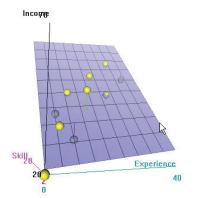
Linear combinations: 2 sets of variables



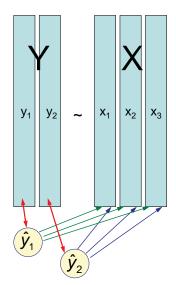
Univariate response:

MRA: find weights to maximize correlation (R) between y and predicted y,

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$



2 sets, multivariate response: MMRA



Multivariate response: MMRA

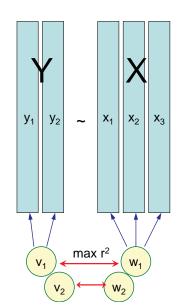
Multivariate MRA: find weights to maximize correlation between *each* y and predicted y,

$$\hat{y}_1 = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$
$$\hat{y}_2 = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3$$

• Coefficients for each response are the same as in separate MRAs

• But: Multivariate tests take correlations among the y's into account. Can be more powerful, by "pooling strength."

2 sets, multivariate response: CanCorr

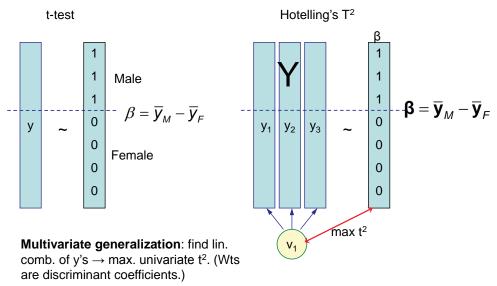


Canonical correlation:

Find linear combinations of the x's that best predicts linear combination of the y's

- $v_1 = a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4$
- $w_1 = b_1 y_1 + b_2 y_2 + b_3 y_3$
- Choose weights to maximize r² (v1,w1)
- Up to s=min(p,q) additional pairs of canonical variables: (v₂, w₂), ... (v_s, w_s)
- All correlations between the Ys and Xs are explained thru the correlation of each v_i with w_i.

Discrete predictors: 2 groups

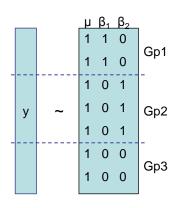


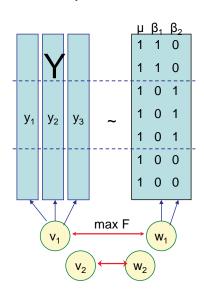
21

Discrete predictors: 1 factor

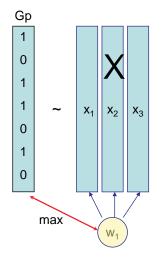
1-way ANOVA

1-way MANOVA





Discrete responses



- Discriminant analysis: find lin. comb. of x's that maximally separates groups \rightarrow max F

• Logistic regression: find lin. comb. of x's that maximally predicts $p \equiv Prob(y=1)$

Logistic regression as a **generalized** linear model:

log odds =
$$\log\left(\frac{p}{1-p}\right) = \mathbf{X}\boldsymbol{\beta}$$

Full generalized linear model for non-normal data:

$$g(\mathbf{y}) = \mathbf{X}\mathbf{f}$$

Discrete responses & predictors

J	lob Satisfac					ucation		
	L	М	Н		L	Μ	Н	
	1	0	0		1	0	0	
	0	1	0		1	0	0	
	1	0	0		1	0	0	
	0	1	0		0	1	0	
	0	0	1	~	0	1	0	
	0	1	0		0	1	0	
	0	1	0		0	0	1	
	0	0	1		0	0	1	
	0	0	1		0	0	1	
				l				

	Education (x)						
(y)		Lo	Μ	Hi			
Satisfaction (y)	L	23	10	5			
isfac	Μ	12	37	9			
Sat	Н	4	9	43			

Simplest example: $\chi 2$ for 2-way table

Multi-way frequency tables: **loglinear models** account for associations among discrete factors

 $log(f) = X\beta$

Techniques, by variable type

						Ч
×ď	Discrete Quantitative		Quantitative		Discrete	
:			q=1	q>1	q=1	q>1
s: x ₁ ,		p=1	Simple regression	MMRA	Simple logistic regression	
Predictor variables: x ₁ ,		p>1	MRA	MMRA Canonical corr. Partial corr.	Mult. logistic regression Discriminant analysis	Multivariate logistic regression
		p=1	t-test 1-way ANOVA	Hotelling T ² 1-way MANOVA	Simple χ^2	Loglinear models
Prè		p>1	Factorial ANOVA	Factorial MANOVA	Logit models Loglinear models	

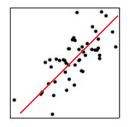
Response variables: $y_1, \dots y_q$

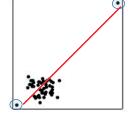
25

Visual statistics: Why plot your data?

Three data sets with exactly the same bivariate summary statistics:

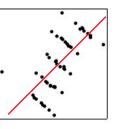
- Same correlations, linear regression lines, etc
- Indistinguishable from standard printed output





Standard data

r=0 but + 2 outliers



Lurking variable?

3. Graphical methods + Geometry=Insight

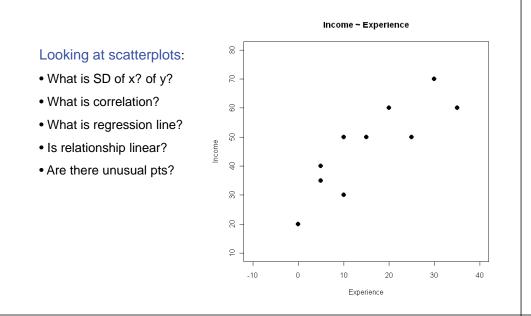
- Graphical methods: major theme of this course
 - No data analysis is well-begun or well-completed without extensive, well-chosen data displays
 - Data analysis = Summarization + Exposure (statistical model) (graphs)
 - Visual statistics: Let your data tell you what they seem to say – graphs speak more clearly than a pvalue.
 - Visual diagnostics: graphical methods for diagnosing violations of model assumptions & suggesting corrective actions.

26

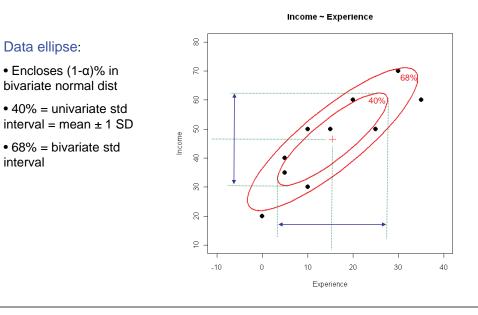
Graphical methods + Geometry=Insight

- Geometry: visual understanding of statistical concepts
 - Regression: fitting lines, planes, hyperplanes
 - Fitting by least squares: projection of y on X
 - df: # of dimensions of a vector space
 - SS: lengths of vectors
 - Ellipses: visual summaries of data (data ellipses) and models (confidence ellipses)
 - Helps to use 2D (& 3D) to understand high-D data

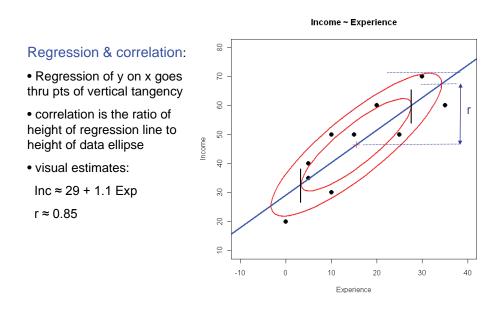
Geometry: Data ellipse



Geometry: Data ellipse



Geometry: Data ellipse



Summary

- Multivariate analysis unifies all traditional linear models within the GLM framework
- Concepts, statistics, and tests apply equally for regression & ANOVA
- All methods involve linear combinations, optimizing some criterion
- Easy generalizations:

Data ellipse:

interval

- Multivariate models: $y = X \beta + \epsilon \rightarrow Y = X B + E$
- Non-normal data: models for g(y)
 - Logistic/logit models: $\log [p/1-p] = X \beta$
 - Loglinear models: log(f) = X β
- Graphical methods + Geometry = Insight!