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Multivariate Data Analysis: Overview
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Overview of Overview

* Today, I'm going to try to paint an overview of the
content of the course with a very broad brush.

* The key ideas are:

= Linear models (regression, ANOVA) extend directly to
multivariate response data

= Nearly all models involve linear combinations (weighted sums)
= Models and data can be more easily understood with graphics
= Statistical ideas have a visual representation in geometry
* Multivariate techniques can be classified by the
attributes of
= data (quantitative vs. categorical)
= Numbers of predictors and response variables

Why study multivariate data analysis?

Multivariate data more common in research

GLM approach: ANOVA, regression, etc. within
a common framework: linear models

Yi =B + B X+ B, X, "‘""",Bpxip T &
In matrix form ( y =XB+& ), GLM extends to
MANOVA, MMReg, etc.

Idea of linear combinations extends readily to
other methods: PCA, discriminant analysis, etc.

Graphical methods, geometry — Insight

Sample problem: workers’ data

Y X1 X2 X3
Name Income Experience Skill Gender In truly multivariate
1 Abby 20 0 2 Female data, we may have
several outcomes:
2 Betty 35 5 5 Female
e Income
3 Charles 40 5 8 Male
* Job satisfaction
4 Doreen 30 10 6 Female
« Manager ratings
5 Ethan 50 10 10 Male
* etc.
6 Francie 50 15 7 Female
7 Georges 60 20 12 Male
How do these vary
8 Harry 50 25 10 Male with predictors?
9 Isaac 70 30 15 Male

10 Juan 60 35 13 Male




1. Linear models: Regression

Regression: understanding the relation of
quantitative predictor(s) on a quantitative

outcome.
E(y [X)=f + BX

Model:
e.g, Income = 29 + 1.12 Experience

Income

Parameters:

Bo = 29 = Income at 0 years

B, = 1.12 = Increase / year = ay
AX

Income ~ Experience
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The regression line on the graph, and the fitted equation are just summaries.

It is important to think about what they mean for a given problem!

Linear models: Regression

Regression: a “linear model” need only be

Income ~ poly(Experienc

linear in the parameters. It can have termse
like x2, log(x), etc.

Model: E(y | X) =, + BX+ B,X°
e.g, Income = 23 + 2.3 Exp -0.33 Exp?

Income

What does B, = 2.3 mean?

What does B, < 0 mean?

Parameters:
By = 23 = Income at 0 years
B, = 2.3 = Slope at 0 years

B, =-0.33 = Decrease in slopelyear

T T T T
20 25 30 35

Experience

The graph of predicted values gives a
visual interpretation

Linear models: Multiple regression

Regression models can have any number

of linear predictors

Model: E(Y | X) = £, + BX, + B,X,

e.g, Income = 14.8 + 0.11 Exper + 3.4 SKill

Parameters:

Bo = 14.8 = Income at 0 years, O skill

3, = 0.11 = Alncome /AExperience | Skill
B, = 3.4 = Alncome /ASKill | Experience

Control: The estimated effect for each
predictor controls (adjusts) for all
others in the model

Incomg
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Linear models: ANOVA

ANOVA: How does mean of quantitative °

Income ~ Gender

response vary with a discrete factor?
Model: E(Y) =y + B (G='"Male’) ]
e.g., Income = 33.75 + 21.25 (G='"Male’)
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Parameters:
M = 33.75 = Female mean Income

B =21.25 = Increment for Male
words?

T
Female

Male

Gender

How would you describe this in




Linear models: Regression + Anova

Income ~ Experience + G
ANCOVA: Is there a difference in a °
e

factor, controlling for a quantitative
predictor? 3

Homogeneity of regression: Are the
regression lines for two or more groups
the same? Are they parallel?

Income
|

Model: E(Y) = p + B,X, + B, (G="Male’) 8
e.g. o ? T T T T T T T
Inc = 27.27 + 0.86 Exp + 9.73 (G='Male’) 0 5 10 15 20 2 3 3B

Experience

The coefficient, B, for G="Male’ allows the intercepts
(or means) to differ. Slopes are forced to be equal.

Linear models: Regression + Anova

Income ~ Experience * Gender

Homogeneity of regression: Test equal
slopes by allowing a different slope for
each group [X * Group interaction]

Model: E(Y) =y + B,X; + B, (G="Male’)
+ B3 X1 * (G='Male’)

60 70

Income
50

e.g., g .
Inc=21.0 + 1.70 Exp + 19.25 (G='"Male’) °
- 1.0 Exp * (G="Male’)
84 ¢
Thus, we have two separate models: 0 5 0 15 20 25 3 3

Experience

Females: Inc =21.0 + 1.7 Exp
Inc =(21+19.25) + (1.7-1.0) Exp
=40.25 + 0.7 Exp

A more complete description,
but maybe overly complex!

Males:
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Linear models: Regression vs. ANOVA General Linear Model (GLM)
Regression | ANOVA All of these are special cases of the General Linear Model:
Dependent Quantitative Quantitative Outcome = linear combination of predictors + residual
(response) p \
— - Yi = Bo+ By Xy + B Xp+ ... + B Xy +&, &~N(O,0?)
Independent Quantitative Discrete factors - R ,
(predictors) data = fitted (explained part) + residual (unexplained)
Concepts, Terms: Xy, X, Main effects: A, B where,
‘ot Interactions: X; * X Interactions: A*B .
statistics Linear hypothelses i Contrasts Regression ANOVA
R2, coefficients F stats, factor effects

Regression and ANOVA are basically the same model, but use different
terminology and emphasize different stats

11

X Quantitative predictor
(experience, skill)

Indicator (0/1) variables for
group membership

B Effect of predictor Diff between 0-group and 1-
(Ay/Ax) group

12




General Linear Model (GLM)

They all become unified when cast in matrix terms:

Yy 1 X &

yl 1 Xll /80 81

:2 - : :21 : ﬁl + :2

Ya 1 X, .. : g,
or,

yn><1 - an(p+1)ﬁ(p+l)><1 + £n><1
For all cases:

 parameter estimates, std. errors, etc. have the same form
« all hypothesis tests are special cases of H,: CB =0

» methods extend directly to: multivariate Y, non-normal errors, etc. 13

2. Linear models & linear combinations

* All methods of multivariate statistics involve
linear combinations of variables, with weights
(coefficients) chosen to optimize some criterion
(measure of fit)

* Methods differ according to:

= 1 set of variables (PCA, FA) vs. 2+ sets (GLM,
canonical correlation, discrim. analysis)

= Nature of variables (2 sets):
» Xs: discrete / continuous
* Ys: discrete / continuous

14

Linear combinations: 1 set of variables

PCA: find weights to maximize variance of v, v,, ...
ViZag X ta, X, tagXg+a, X,
\>( V, = Dby X; + by X, + by X5+ by X,
subject to: all v;, v; uncorrelated

PCA: Linear combinations to maximize variance

B

15

Linear combinations: 1 set of variables

With p variables, p components account for 100% of
variance, and correspond to a rotation of the variable
space to uncorrelated components.

)( Goal in PCA is to account for most variance with
k<<p components.
Rotated to PC vectors
Xy [| X2 [| X3 || X4 v—;:

16




Factor analysis: Latent variables

FA: find weights for latent (unobserved)
factors to account for correlations among

@ observed variables
& ~—

Xp =AMy Fr+ A Fot gy
Xo = Ay Fy tE

834_\@ X3 = Ay Fyo+ €5

x4 = Ao Fyo+g,

Differs from PCA in that error variance is
taken into account.

FA can often give a simpler account with
fewer factors or non-zero weights
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Linear combinations: 2 sets of variables

max R?

Univariate response:

MRA: find weights to maximize correlation (R)
between y and predicted y,

y =b, + bx, +b,x, +b,X,

Incomg

40 18

2 sets, multivariate response: MMRA

Multivariate response: MMRA

Multivariate MRA: find weights to maximize
correlation between each y and predicted v,
y, = b, +bx, +b,x, +b,x,

A~

Y, =Cy +C X; +C, X, +C;5X,

* Coefficients for each response are the
same as in separate MRAs

* But: Multivariate tests take correlations
among the y’s into account. Can be more
powerful, by “pooling strength.”
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2 sets, multivariate response: CanCorr

T{

@ — r2 @
€«

Canonical correlation:

Find linear combinations of the x’s that best
predicts linear combination of the y’s

Vi=a X tay, X, +agXg+a, X,
Wy =byy, +byy, + by,
* Choose weights to maximize r2 (vi,wl)

¢ Up to s=min(p,q) additional pairs of
canonical variables: (v,, W), ... (Vg, W)
¢ All correlations between the Ys and Xs are

explained thru the correlation of each v; with

W,

20




Discrete predictors: 2 groups

t-test Hotelling's T?
I _ o B
1 1
11 male Y 1
. _ 1 8=y -7y
B i v A R A o o o R 2 I T
y ~ Yil| Y2 ||Ys| ~
0 0
Female
0 0
0 0
. NV
ax t2
Multivariate generalization: find lin.
comb. of y's — max. univariate t?. (Wts
are discriminant coefficients.)
21

Discrete predictors: 1 factor

1-way ANOVA 1-way MANOVA
N u B B o u B, B,
110 110
Gpl
1107 Y 110
T 1 101 | Tl [roa]
y| ~ |1 01 cp2 Val|Vo||Va| ~ |1 O 1
101 101
100 100
Gp3
100 100

o o o max F
Multivariate generalization: find lin.

comb. of y's — max. univariate F @
( : ) 22

Discrete responses

Gp
1 e Discriminant analysis: find lin. comb. of x’s
0 x that maximally separates groups — max F
1 « Logistic regression: find lin. comb. of x’s that
maximally predicts p = Prob(y=1)
1 T X[ X2 || X5
0
1 Logistic regression as a generalized linear model:
0 log odds= log P XB
~ NI/
max Full generalized linear model for non-normal data:

a(y)=XB

23

Discrete responses & predictors

Job Satisfac Education Education (x)

L MH L MH > Lo| M | Hi

100 100 IS 23| 10| 5

Q

010 100 g IM| 12| 37| 9

Lew 100 % 4| 9l 43

010 010

001 - 010 Simplest example: x2 for 2-way table
010 010

Multi-way frequency tables:

010 oo loglinear models account for
001 00 1 associations among discrete factors
°ot oot log(f) = XB

24




Xp

Predictor variables: x,, ...

Techniques, by variable type

Response variables: y,, ... y,
Quantitative Discrete
g=1 g>1 g=1 g>1
.qz) p=1 Simple MMRA Simple logistic
T regression regression
% p>1 MRA MMRA Mult. logistic Multivariate
8, Canonical corr. | regression logistic
Partial corr. Discriminant regreSSion
analysis
© p=1 | t-test Hotelling T? Simple x? Loglinear
5 1-way ANOVA | 1-way MANOVA models
(8]
-é’ p>1 Factorial ANOVA | Factorial Logit models
MANOVA Loglinear
models

25

3. Graphical methods + Geometry=Insight

* Graphical methods: major theme of this course

* No data analysis is well-begun or well-completed
without extensive, well-chosen data displays

= Data analysis = Summarization + Exposure
(statistical model)  (graphs)

= Visual statistics: Let your data tell you what they
seem to say — graphs speak more clearly than a p-
value.

= Visual diagnostics: graphical methods for
diagnosing violations of model assumptions &
suggesting corrective actions.

26

Visual statistics: Why plot your data?

Three data sets with exactly the same bivariate summary statistics:

* Same correlations, linear regression lines, etc

¢ Indistinguishable from standard printed output

Standard data

r=0 but + 2 outliers

Lurking variable?

27

Graphical methods + Geometry=Insight

* Geometry: visual understanding of statistical
concepts
= Regression: fitting lines, planes, hyperplanes
Fitting by least squares: projection of y on X
df: # of dimensions of a vector space
SS: lengths of vectors

Ellipses: visual summaries of data (data ellipses) and
models (confidence ellipses)

Helps to use 2D (& 3D) to understand high-D data

28




Geometry: Data ellipse

Income ~ Experience

30

Looking at scatterplots:
* What is SD of x? of y?
* What is correlation?

* What is regression line?

50
L
]
.
*

« Is relationship linear?

Income

« Are there unusual pts?

40

30

20

10

10 20 20 40

Experience

Geometry: Data ellipse

Data ellipse:

¢ Encloses (1-0)% in
bivariate normal dist

* 40% = univariate std
interval = mean + 1 SD

* 68% = bivariate std
interval

Income ~ Experience
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Geometry: Data ellipse

Regression & correlation:

* Regression of y on x goes
thru pts of vertical tangency

« correlation is the ratio of
height of regression line to
height of data ellipse

« visual estimates:
Inc=29 + 1.1 Exp
r=0.85

Income

10

Income ~ Experience

10 20 30 40

Experience

Summary

Multivariate analysis unifies all traditional linear models
within the GLM framework
Concepts, statistics, and tests apply equally for
regression & ANOVA
All methods involve linear combinations, optimizing
some criterion
Easy generalizations:
= Multivariate models:y =XB+e€—>Y=XB+E
= Non-normal data: models for g(y)
* Logistic/logit models: log [p/1-p]= X B
» Loglinear models: log(f) = X B
Graphical methods + Geometry = Insight!
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