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Overview of Overview

• Today, I’m going to try to paint an overview of the 
content of the course with a very broad brush.

• The key ideas are:
Linear models (regression, ANOVA) extend directly to 
multivariate response data
Nearly all models involve linear combinations (weighted sums) 
Models and data can be more easily understood with graphics
Statistical ideas have a visual representation in geometry

• Multivariate techniques can be classified by the 
attributes of 

data (quantitative vs. categorical)
Numbers of predictors and response variables
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Why study multivariate data analysis?

• Multivariate data more common in research
• GLM approach: ANOVA, regression, etc. within 

a common framework: linear models

• In matrix form (                     ), GLM extends to 
MANOVA, MMReg, etc.

• Idea of linear combinations extends readily to 
other methods: PCA, discriminant analysis, etc.

• Graphical methods, geometry 
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Sample problem: workers’ data

             Name Income Experience Skill Gender
1     Abby     20          0     2 Female
2    Betty     35          5     5 Female
3  Charles     40          5     8   Male
4   Doreen     30         10     6 Female
5    Ethan     50         10    10   Male
6  Francie     50         15     7 Female
7  Georges     60         20    12   Male
8    Harry     50         25    10   Male
9    Isaac     70         30    15   Male
10    Juan     60         35    13   Male

Y                      X1        X2         X3

In truly multivariate 
data, we may have 
several outcomes:

• Income

• Job satisfaction

• Manager ratings

• etc.

How do these vary 
with predictors?
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1. Linear models: Regression

Regression: understanding the relation of 
quantitative predictor(s) on a quantitative 
outcome.

Model: 

e.g, Income = 29 + 1.12 Experience
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Parameters:

0 = 29 = Income at 0 years

1 = 1.12 = Increase / year = y
x

The regression line on the graph, and the fitted equation are just summaries.
It is important to think about what they mean for a given problem!
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Linear models: Regression

Regression: a “linear model” need only be 
linear in the parameters. It can have terms 
like x2, log(x), etc.

Model: 

e.g, Income = 23 + 2.3 Exp -0.33 Exp2
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Parameters:

0 = 23 = Income at 0 years

1 = 2.3 = Slope at 0 years

2 = -0.33 = Decrease in slope/year

What does 1 = 2.3 mean? 

What does 2 < 0 mean?

The graph of predicted values gives a 
visual interpretation 
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Linear models: Multiple regression

Regression models can have any number
of linear predictors

Model: 

e.g, Income = 14.8 + 0.11 Exper + 3.4 Skill

Parameters:

0 = 14.8 = Income at 0 years, 0 skill

1 = 0.11 = Income / Experience | Skill

2 = 3.4 = Income / Skill | Experience

0 1 1 2 2( | )E y x x x

Control: The estimated effect for each 
predictor controls (adjusts) for all 
others in the model 8

Linear models: ANOVA
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ANOVA: How does mean of quantitative 
response vary with a discrete factor?

Model: E(Y) = + (G=‘Male’)

e.g., Income = 33.75 + 21.25 (G=‘Male’)

Parameters:

= 33.75 = Female mean Income

= 21.25 = Increment for Male

1
( ' ')

0
G Male

M

F

How would you describe this in 
words?
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Linear models: Regression + Anova

ANCOVA: Is there a difference in a 
factor, controlling for a quantitative 
predictor?

Homogeneity of regression: Are the 
regression lines for two or more groups 
the same?  Are they parallel?

Model: E(Y) = + 1X1 + 2 (G=‘Male’)

e.g.,

Inc = 27.27 + 0.86 Exp + 9.73 (G=‘Male’) 0 5 10 15 20 25 30 35
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The coefficient, 2 for G=‘Male’ allows the intercepts 
(or means) to differ. Slopes are forced to be equal.
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Linear models: Regression + Anova

Homogeneity of regression: Test equal 
slopes by allowing a different slope for 
each group [X * Group interaction]

Model: E(Y) = + 1X1 + 2 (G=‘Male’)          

                           + 3 X1 * (G=‘Male’) 

e.g.,

Inc = 21.0 + 1.70 Exp + 19.25 (G=‘Male’)

                 - 1.0 Exp * (G=‘Male’)
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Females:  Inc = 21.0 + 1.7 Exp
Males:      Inc  = (21+19.25) + (1.7-1.0) Exp
                        = 40.25 + 0.7 Exp

Thus, we have two separate models:

A more complete description, 
but maybe overly complex!
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Linear models: Regression vs. ANOVA

Regression ANOVA
Dependent 
(response)

Quantitative Quantitative

Independent 
(predictors)

Quantitative Discrete factors

Concepts, 
statistics

Terms: X1, X2

Interactions: X1 * X2

Linear hypotheses
R2, coefficients

Main effects: A, B
Interactions: A*B
Contrasts
F stats, factor effects

Regression and ANOVA are basically the same model, but use different 
terminology and emphasize different stats
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General Linear Model (GLM)

Outcome   =   linear combination of predictors   + residual

       yi          =  0 + 1 Xi1 + 2 Xi2 + … + p Xip    + i ,      i ~ N(0, 2)

All of these are special cases of the General Linear Model:

     data          =   fitted (explained part)                        + residual (unexplained)

Regression ANOVA

x Quantitative predictor 
(experience, skill)

Indicator (0/1) variables for 
group membership

Effect of predictor 
( y/ x)

Diff between 0-group and 1-
group

where,
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General Linear Model (GLM)

They all become unified when cast in matrix terms:

1 11 1
0

2 21 2
1

1

1
1

1n n n

y x
y x

y x

or,

1 ( 1) ( 1) 1 1n n p p ny X
For all cases:

• parameter estimates, std. errors, etc. have the same form

• all hypothesis tests are special cases of  H0 : C = 0

• methods extend directly to: multivariate Y, non-normal errors, etc. 14

2. Linear models & linear combinations

• All methods of multivariate statistics involve 
linear combinations of variables, with weights
(coefficients) chosen to optimize some criterion
(measure of fit)

• Methods differ according to:
1 set of variables (PCA, FA) vs. 2+ sets (GLM, 
canonical correlation, discrim. analysis)
Nature of variables (2 sets): 

• Xs: discrete / continuous
• Ys: discrete / continuous
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Linear combinations: 1 set of variables

x1 x3x2 x4

X

PCA: find weights to maximize variance of v1, v2, …

    v1 = a1 x1 + a2 x2 + a3 x3 + a4 x4

    v2 = b1 x1 + b2 x2 + b3 x3 + b4 x4

subject to: all vi, vj uncorrelated

v1 v2

16

Linear combinations: 1 set of variables

x1 x3x2 x4

X

With p variables, p components account for 100% of 
variance, and correspond to a rotation of the variable 
space to uncorrelated components.

Goal in PCA is to account for most variance with 
k<<p components.

v1 v2
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Factor analysis: Latent variables

x3

x2

x1

x4

1

2

3

4

F1

F2

FA: find weights for latent (unobserved) 
factors to account for correlations among 
observed variables

x1 = 11 F1 + 12 F2 + 1

x2 = 21 F1              + 2

x3 =             32 F2 + 3

x4 =             42 F2 + 4

Differs from PCA in that error variance is 
taken into account.

FA can often give a simpler account with 
fewer factors or non-zero weights
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Linear combinations: 2 sets of variables

x1 x3x2y

Univariate response:

MRA: find weights to maximize correlation (R) 
between y and predicted y,

     
0 1 1 2 2 3 3ˆ b x b x by xb

ŷ
max R2

X
~
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2 sets, multivariate response: MMRA

x1 x3x2y1

Multivariate response: MMRA
Multivariate MRA: find weights to maximize 

correlation between each y and predicted y,

     

y2
1 0 1 1 2 2 3 3ˆ b x b x by xb

0 1 12 2 2 3 3ˆ c x c x cy xc

• Coefficients for each response are the 
same as in separate MRAs

• But: Multivariate tests take correlations 
among the y’s into account.  Can be more 
powerful, by “pooling strength.”1ŷ

2ŷ

XY
~
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2 sets, multivariate response: CanCorr

x1 x3x2

Canonical correlation:
Find linear combinations of the x’s that best 

predicts linear combination of the y’s
v1 = a1 x1 + a2 x2 + a3 x3 + a4 x4

             w1 = b1 y1 + b2 y2 + b3 y3

• Choose weights to maximize r2 (v1,w1)
• Up to s=min(p,q) additional pairs of 

canonical variables: (v2, w2), … (vs, ws)
• All correlations between the Ys and Xs are 

explained thru the correlation of each vi with 
wi.

y1 y2

v1 w1
max r2

v2 w2

XY
~
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Discrete predictors: 2 groups

1

1

1

0

0

0

0

y ~

Male

Female

t-test

1

1

1

0

0

0

0

~y1 y2 y3

v1

Hotelling’s T2

max t2
Multivariate generalization: find lin. 
comb. of y’s 2. (Wts 
are discriminant coefficients.)

Y
M Fy y M Fy y
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Discrete predictors: 1 factor

y

1   1   0     

1   1   0

1   0   1

1   0   1

1   0   1   

1   0   0

1   0   0

y1 y2 y3

1   1   0     

1   1   0

1   0   1

1   0   1

1   0   1   

1   0   0

1   0   0

v1 w1

Gp1

Gp2

Gp3

~ ~

1-way ANOVA 1-way MANOVA

1  2 1  2

Multivariate generalization: find lin. 
comb. of y’s 

max F

Y

v2 w2
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Discrete responses

x1 x2 x3

1

0

1

1

0

1

0

~

• Discriminant analysis: find lin. comb. of x’s 
that maximally separates groups 

• Logistic regression: find lin. comb. of x’s that 
maximally predicts p Prob(y=1)

Gp

w1w1

Logistic regression as a generalized linear model:

log
1

p
p

X

X

Full generalized linear model for non-normal data:

( )g y X

log odds =

max
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Discrete responses & predictors

1   0   0     

0   1   0

1   0   0

0   1   0

0   0   1   

0   1   0

0   1   0

0   0   1

0   0   1

1   0   0     

1   0   0

1   0   0

0   1   0

0   1   0   

0   1   0

0   0   1

0   0   1

0   0   1 

L   M  H L   M  H

Job Satisfac Education
Lo M Hi

L 23 10 5

M 12 37 9

H 4 9 43

Education (x)
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)

~
Simplest example: 2 for 2-way table

Multi-way frequency tables: 
loglinear models account for 
associations among discrete factors

log( )f X
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Techniques, by variable type

Quantitative Discrete

q=1 q>1 q=1 q>1

p=1 Simple 
regression

MMRA Simple logistic 
regression

p>1 MRA MMRA
Canonical corr.
Partial corr.

Mult. logistic 
regression
Discriminant 
analysis

Multivariate 
logistic 
regression

p=1 t-test
1-way ANOVA

Hotelling T2

1-way MANOVA
Simple 2 Loglinear 

models

p>1 Factorial ANOVA Factorial 
MANOVA

Logit models
Loglinear 
models
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…
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Response variables: y1, … yq
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3. Graphical methods + Geometry=Insight

• Graphical methods: major theme of this course
No data analysis is well-begun or well-completed 
without extensive, well-chosen data displays
Data analysis = Summarization  + Exposure

                             (statistical model)     (graphs)
Visual statistics: Let your data tell you what they 
seem to say – graphs speak more clearly than a p-
value.
Visual diagnostics: graphical methods for 
diagnosing violations of model assumptions & 
suggesting corrective actions.
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Visual statistics: Why plot your data?

Three data sets with exactly the same bivariate summary statistics:

• Same correlations, linear regression lines, etc

• Indistinguishable from standard printed output

Standard data r=0 but + 2 outliers Lurking variable?

28

Graphical methods + Geometry=Insight

• Geometry: visual understanding of statistical 
concepts

Regression: fitting lines, planes, hyperplanes
Fitting by least squares: projection of y on X
df: # of dimensions of a vector space
SS: lengths of vectors
Ellipses: visual summaries of data (data ellipses) and 
models (confidence ellipses)
Helps to use 2D (& 3D) to understand high-D data
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Geometry: Data ellipse

Looking at scatterplots:

• What is SD of x? of y?

• What is correlation?

• What is regression line?

• Is relationship linear?

• Are there unusual pts?
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Geometry: Data ellipse

Data ellipse:

• Encloses (1- )% in 
bivariate normal dist

• 40% = univariate std 
interval = mean ± 1 SD

• 68% = bivariate std 
interval

40%

68%
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Geometry: Data ellipse

Regression & correlation:

• Regression of y on x goes 
thru pts of vertical tangency

• correlation is the ratio of 
height of regression line to 
height of data ellipse

• visual estimates:

r
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Summary

• Multivariate analysis unifies all traditional linear models 
within the GLM framework

• Concepts, statistics, and tests apply equally for 
regression & ANOVA

• All methods involve linear combinations, optimizing 
some criterion

• Easy generalizations:
Multivariate models: y = X + Y = X B + E
Non-normal data: models for g(y)

• Logistic/logit models:  log [p/1-p] = X
• Loglinear models: log(f) = X

• Graphical methods + Geometry = Insight!


