Multivariate multiple regression & visualizing multivariate tests

Michael Friendly Psychology 6140

Multivariate regression

When there are several (p>1) criterion variables, we could just fit p separate models

 $\mathbf{y}_{1} = \mathbf{X}\boldsymbol{\beta}_{1}$ $\mathbf{y}_{2} = \mathbf{X}\boldsymbol{\beta}_{2}$ \dots $\mathbf{y}_{p} = \mathbf{X}\boldsymbol{\beta}_{p}$ $\mathbf{x}_{p} = \mathbf{X}\boldsymbol{\beta}_{p}$ $\mathbf{y}_{p} = \mathbf{X}\boldsymbol{\beta}_{p}$ $\mathbf{y}_{p} = \mathbf{X}\boldsymbol{\beta}_{p}$

- But this:
 - Does not give simultaneous tests for all regressions
 - Does not take correlations among the y's into account

Overview: Univariate & Multivariate Linear Models

	Dependent variables				
Independent variables	1 Quantitative y = X β	2+ Quantitative Y = X B			
Quantitative	Regression	Multivariate regression			
Categorical	ANOVA	MANOVA			
Both	Reg. w/ dummy vars ANCOVA Homogeneity of regression	General MLM Homogeneity of regression MANCOVA			

Today, just multivariate regression, with questions of homogeneity of regression. Once we learn how to do multivariate tests, extensions to other contexts are easy

Why do multivariate tests?

- Avoid multiplying error rates, as in simple ANOVA
 - Overall test for multiple responses-- similar to overall test for many groups: g tests: α_{all} ≈ g α
- Often, multivariate tests are more powerful, when the responses are correlated
 - Small, positively correlated effects can pool power.
 - If responses are uncorrelated, no need for multivariate tests
 - But this is rarely so
- Multivariate tests provide a way to understand the structure of relations across separate response measures. In particular:
 - how many "dimensions" of responses are important?
 - how do the predictors contribute to these?

Multivariate regression model

The multivariate regression model is

$$\begin{bmatrix} \mathbf{y}_1 & \cdots & \mathbf{y}_p \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_q \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_1 & \cdots & \boldsymbol{\beta}_p \\ \mathbf{p}_1 & \cdots & \mathbf{p}_p \end{bmatrix} + \mathbf{E}_{n \times p} \qquad \begin{array}{c} \text{cols are coeffs for each criterion} \\ \text{rows, for each predictor} \\ \mathbf{Y}_{n \times p} = \mathbf{X}_{n \times q} & \mathbf{B}_{q \times p} + \mathcal{E}_{n \times p} \end{array}$$

- The LS solution, B = (X'X)⁻¹ X'Y gives same coefficients as fitting p models separately.
- (Omitting here: consideration of model selection for each model)

Example: Rohwer data

- n=32 Lo SES kindergarten kids
- *p*=3 response measures of aptitude/ achievement: SAT, PPVT, Raven
- q=5 predictors: PA tests: n, s, ns, na, ss

SAS:

```
proc reg data=lo_ses;
    model sat ppvt raven = n s ns na ss;
```

```
M1: mtest /* all coeffs = 0 */
```

R:

5

mod1<-lm(cbind(SAT, PPVT, Raven) ~ n+s+ns+na+ss, data=lo_ses)
Manova(mod1)</pre>

Rohwer data: univariate regressions

Separate univariate regressions

R ²	SAT	PPVT	Raven	Overall tests for each
	0.208	0.511**	0.222	response: H ₀ : β _i = 0
Coefficients (Intercept) n s ns ns na ss	: SAT 4.151 -0.609 -0.050 -1.732 0.495 2.248*	PPVT 33.006 -0.081 -0.721 -0.298 1.470* 0.324	Raven 11.173 0.211 0.065 0.216 -0.037 -0.052	Tests for predictors on each response

Rohwer data: multivariate regression

Yet, the multivariate test is highly significant

- Overall test for the multivariate model: H₀: B = 0
- Positive correlations among responses have made this test more powerful – pooling power!

Multivariate Stat	tistics	and F App	proximat	ions	
		S=3	M=0.5	N=13	.5
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda Pillai's Trace Hotelling-Lawley Roy's Max Root	0.343 0.825 1.449 1.055	2.54 2.35 2.72 6.54	15 15 15 5	80.46 93 49.77 31	0.0039 0.0066 0.0042 0.0003

Publish or perish? Doesn't look like there is much predictive power here!

Multivariate General Linear Hypothesis (GLH)

- In addition to the overall test, H₀: B = 0, it is more often desired to test hypotheses about subsets of predictors or linear combinations of coefficients
- The GLH is a single, general method for all such tests

 $\boldsymbol{H}_{0}: \boldsymbol{\mathsf{L}}_{r \times q} \quad \boldsymbol{\mathsf{B}}_{q \times p} = \boldsymbol{\mathsf{0}}_{r \times p}$

where L specifies *r* linear combinations of the parameters

Extended GLH

The GLH can be extended to test subsets or linear combinations of coefficients across the criteria

 H_0 : L B $M_{p \times t} = 0$

where the post-factor, \mathbf{M} , specifies *t* linear combs. across criteria

Previous slide: special case of M_(pxp) = I

• Overall test (**B** = **0**):
$$L_{(q \times q)} = I$$
 and $M_{(p \times p)} = I$

Example: Coeffs for Y1 = coeffs for Y2

9

11

$$\mathbf{L} = \mathbf{I}, \quad \mathbf{M} = \begin{pmatrix} \mathbf{1} \\ -\mathbf{1} \end{pmatrix} \quad \Rightarrow \quad \mathbf{L} \mathbf{B} \mathbf{M} = \begin{pmatrix} \rho_{01} - \rho_{02} \\ \beta_{11} - \beta_{12} \\ \beta_{21} - \beta_{22} \\ \beta_{31} - \beta_{32} \end{pmatrix} = \mathbf{0}$$

mtest y1-y2;

(Again, makes sense only if Y1 and Y2 are commensurable)

(0 0)

Note: In MANOVA designs:

- L specifies a set of contrasts or tests among 'between-group' effects
- **M** specifies contrasts among 'within-subject' effects (e.g., orthogonal polynomials or other within-S comparisons)

Tests of multivariate hypotheses

- In the general linear model, Y = X B + ε, all hypotheses are tested in the same way
- Calculate the q x q sum of squares and products matrices

 $\mathbf{H} \equiv SSP_{H} = (\mathbf{LB})^{T} [\mathbf{L} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{L}^{T}]^{-1} (\mathbf{LB})$ $\mathbf{E} \equiv SSP_{E} = \hat{\mathcal{E}}^{T} \hat{\mathcal{E}}$

- Diag elements of H & E are just the univariate SS
- The multivariate analog of the univariate F-test:

$$F = \frac{MS_{H}}{MS_{E}} \rightarrow (MS_{H} - F \times MS_{E}) = 0 \text{ is } |\mathbf{H} - \lambda \mathbf{E}| = 0$$

Source	df	SSP		
		36,179.7027]	
αο	1	72,484.4865 145,219.5676		
-		15,322.4325 30,697.8378	6489.1892	
		「 3,653.7732 ◀		SSR(y ₁)
Γαο	5	2,159.9966 2,883.6759	$= \mathbf{Q}_h$	
-		63.3680 281.4842	76.5286	SSR(y ₃)
Residual	31	Given by (4.7.3)		
		∑ 57,363.0 0		
Total	37	76,175.0 150,868.0	$= \mathbf{Y}'\mathbf{Y}$	
		15,843.0 31,193.0	6.834.0	

 $\mathbf{Q}_e = \mathbf{Y}'[\mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}']\mathbf{Y}$

ſ	13,929.5241		7	SAT
=	1530.5169	2764.7565		PPVT
L	457.1995	213.6780	268.2822	Raven
	SSE(y ₁)	SSE(y ₂)	SSE(y ₃)	

Pause: ANOVA → MANOVA tests

Recall that for a univariate response, the ANOVA table for the test of all predictors, $X_1 - X_p$, H_0 : **β**=0 looks like the following:

Source	SS	df	MS	
Regression	SSR(X ₁ , X _p)	q	SSR/p	MSR/MSE
Error	SSE	n-q	SSE/n-p	

- The *F* statistic quantifies how big MSR is relative to MSE as evidence against the null hypothesis.
- It is referred to an F distribution with (q, n-q) df to give *p*-values
- The same MSE is used in all tests of sub-hypotheses, e.g., β_1 = β_2 =0

In MANOVA tests, each SS becomes a $p \ge p$ SSP matrix, **H** for the hypothesis, **E** for error. How big is **H** relative to **E**?

Tests of multivariate hypotheses

- All multivariate test statistics are based on latent roots, λ_i of H in the metric of E (or of HE⁻¹), or latent roots θ_i of H(H+E) ⁻¹
- These measure the "size" of H relative to E in up to p orthogonal dimensions
- Various test statistics differ in how the information is combined across dimensions
 - Wilks' Lambda: product
 - Trace criteria: sum

13

15

Roy's test: maximum

All ask "How big is H relative to E"?

HE plots: Visualizing H & E

ary Test

HE plots show the H & E matrices as data ellipsoids.

It is difficult to judge naively the size of **H** relative to **E**, but the eigenvalues of HE^{-1} capture the essential information.

Contributions of $s=\min(p, df_h)$ dimensions can be summarized in different kinds of "means."

As explained later, this plot provides a visual test of significance, based on Roy's test How big is H relative to E?

Multivariate test statistics: overview

- How big is H relative to E across one or more dimensions?
- All test statistics can be seen as kinds of means of the s=min(p, df_h) non-zero eigenvalues of HE⁻¹ or of H(H+E)⁻¹

Table 1: Multivariate test statistics as functions of the eigenvalues λ_i solving det $(H - \lambda E) = 0$ or eigenvalues ρ_i solving det $[H - \rho(H + E)] = 0$.

Criterion	Formula	"mean" of ρ	Partial η^2
Wilks' A	$\Lambda = \prod_{i=1}^{s} \frac{1}{1+\lambda_i} = \prod_{i=1}^{s} (1-\rho_i)$	geometric	$\eta^2 = 1 - \Lambda^{1/s}$
Pillai trace	$V = \sum_{i}^{s} \frac{\lambda_{i}}{1 + \lambda_{i}} = \sum_{i}^{s} \rho_{i}$	arithmetic	$\eta^2 = \frac{V}{s}$
Hotelling-Lawley trace	$H = \sum_{i}^{s} \lambda_{i} = \sum_{i}^{s} \frac{\rho_{i}}{1 - \rho_{i}}$	harmonic	$\eta^2 = \frac{H}{H+s}$
Roy maximum root	$R = \lambda_1 = \frac{\rho_i}{1 - \rho_i}$	supremum	$\eta^2 = \frac{\lambda_1}{1+\lambda_1} = \rho_1$

(This table uses ρ instead of θ for eigenvalues of $\bm{H}(\bm{H}{+}\bm{E})^{\text{-1}}$)

18

Multivariate test statistics: geometry

Easiest to see if we transform **H** & **E** to "canonical space" where

- **E** \rightarrow **E**^{*} = **I** (stdized & uncorrelated)
- $(H+E) \rightarrow (H+E)^* = E^{-1/2} (H+E) E^{-1/2}$
- Allows to focus on just size of (H+E)*

Then,

- Wilks' ∧ ≡ test on area, ~ (a x b)⁻¹
- HLT criterion ~ test on c
- Pillai trace criterion ~ test on d
- Roy's test ~ test on a alone

Multivariate test statistics: details

- n_h = df for hypothesis = # rows of L
- n_e = df for error
- s = min(n_h,p) = # non-zero roots = rank(H)
- $\lambda_1, \lambda_2, \dots, \lambda_s = \text{roots of } |\mathbf{H} \lambda \mathbf{E}| = 0$ $|\mathbf{H}\mathbf{E}^{-1} - \lambda \mathbf{I}| = 0$
- $\theta_1, \theta_2, \dots, \theta_s = \text{roots of } |\mathbf{H}(\mathbf{H}+\mathbf{E})^{-1} \lambda \mathbf{I}| = 0$

$$\lambda_i = \frac{\theta_i}{1 - \theta_i} \qquad \theta_i = \frac{\lambda_i}{1 + \lambda_i}$$

Wilks' Lambda: details

A likelihood-ratio test of H₀: L B = 0

$$\Lambda = \frac{|\mathbf{E}|}{|\mathbf{H} + \mathbf{E}|} = \prod_{i=1}^{s} \frac{1}{1 + \lambda_i} = \prod_{i=1}^{s} (1 - \theta_i)$$

■ Rao's F approximation (exact if s≤2)

$$F = \frac{1 - \Lambda^{1/t}}{\Lambda^{1/t}} \times \frac{mt - 2k}{pn_n} \sim F(pn_h, mt - 2k)$$

NB: df not always integers

21

• Association: $\eta^2 = 1 - \Lambda^{1/s}$ = geometric mean

Roy's maximum root test

- Most powerful when there is one large dimension of H relative to E
- $R = \lambda_1$ $\eta^2 = R/(R+1)$

$$F = \frac{n_e + n_h - s}{s} \quad \sim \quad F(s, n_e + n_h - s)$$

(Exact if s=1)

 Simplicity makes this useful for visual tests of significance in HE plots

Pillai & Hotelling-Lawley trace criteria

- Based on sum (or average) of λ_i or θ_i
- Pillai:

$$V = tr[\mathbf{H}(\mathbf{H} + \mathbf{E})^{-1}] = \sum_{i=1}^{s} \theta_i = \sum \frac{\lambda_i}{1 + \lambda_i} \qquad \eta^2 = V/s$$
$$F = \frac{2n + s + 1}{2m + s + 1} \times \frac{V}{s - V} \sim F[s(2m + s + 1), s(2n + s + 1)]$$

Hotelling-Lawley:

$$H = tr[HE^{-1}] = \sum_{i=1}^{s} \lambda_i = \sum \frac{\theta_i}{1 - \theta_i} \qquad \eta^2 = H/(H+s)$$
$$F = \frac{2(ns+1)}{s^2(2m+s+1)} \times H \sim F[s(2m+s+1), 2(ns+1)]$$

Multivariate tests for individual predictors

- H₀: β_i = 0 simultaneous test, for all p responses, of predictor x_i
 - **L** = (0,0, ..., 1, 0,...0)_(1xq) in GLH
 - $\mathbf{H} = \mathbf{\beta}_i^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{\beta}_i a \text{ rank 1 matrix } (s=1)$
 - All multivariate tests are exact & have the same *p*-values
 - More parsimonious than separate univariate tests for each response.

Example: Rohwer data (SAS)

proc reg data=lo_s	ses;
model sat ppvt	raven = n s ns na ss ;
Mn: mtest n;	/* n=0 for all responses */
Mna: mtest na;	/* na=0 for all responses */
run:	

Output for NA:

Multivariate Sta	tistics S=1	and Exact M=0.5	F Stat: N=13.	istics 5		
Statistic	Value	F Value	Num DF	Den DF	Pr > F	
Wilks' Lambda	0.733	3.53	3	29	0.0271	
Pillai's Trace	0.267	3.53	3	29	0.0271	
Hotelling-Lawley	0.365	3.53	3	29	0.0271	
Roy's Max Root	0.365	3.53	3	29	0.0271	

Example: Rohwer data (R)

> 1	lanov	a(mod1)				
T				+ +		
тyр	be II	MANUVA	ests: Pillai	τεςτ	statistic	
	Df t	est stat	approx F num	n Df de	n Df Pr(>F)	
n	1	0.0384	0.3856	3	29 0.76418	
s	1	0.1118	1.2167	3	29 0.32130	
ns	1	0.2252	2.8100	3	29 0.05696 .	
na	1	0.2675	3.5294	3	29 0.02705 *	
SS	1	0.1390	1.5601	3	29 0.22030	
	-					
Sig	nif.	codes:	0 '***' 0.00)1 '**'	0.01 '*' 0.05 '	.'0.1''1

Note: Manova() and Anova() in the **car** package are identical They give a compact summary for *all* predictors, for a *given* test statistic Gory details are available from the **summary()** method

Canonical analysis: How many dimensions?

- Sequential tests for the latent roots λ_i of HE ⁻¹ indicate the number of dimensions of the ys predicted by the xs.
- Canonical correlations: correlation of best linear combination of ys with best of xs

$$\lambda_i = \frac{\rho^2}{1 - \rho^2} \qquad \rho^2 = \frac{\lambda}{1 - \lambda^2}$$

proc reg data=lo_ses; model sat ppvt raven = n s ns na ss; M1: mtest / canprint; /* all coeffs = 0 */ run;

Canonical analysis: How many dimensions?

	Canonical Correlation	Adjusted Canonical Correlation	Approximate Standarc Error	e Squared Canonical Correlation	
1 2 3	0.716526 0.490621 0.266778	0.655198 0.414578 0.211906	0.081098 0.126549 0.154805	0.513409 0.240709 0.071170	
	Eigenv	alues of Inv(E)*H = CanRsq/((1-CanRsq)	
	Eigenvalue	Difference	Proportion	Cumulative	
1 2 3	1.0551 0.3170 0.0766	0.7381 0.2404	0.7283 0.2188 0.0529	0.7283 0.9471 1.0000	
	Test of curre	[:] HO: The canon ent row and all	ical correlati that follow a	ions in the are zero	
	Likelihood Ratio	Approximate F Value	Num DF De	en DF Pr > F	
1 2 3	0.34316907 0.70525204 0.92882959	2.54 1.43 0.79	15 80 8 3	0.458 60 31 0.0039 0.2025 0.5078	
		Wilks' Lambo	da o	only 1 signif. dim	2

Visualizing multivariate tests: HE plots

The H and E matrices in the GLH summarize the (co)variation of the fitted values and residuals for a given effect

$$\mathbf{H} = \hat{\mathbf{Y}}_{eff}^{\mathsf{T}} \hat{\mathbf{Y}}_{eff} \qquad \qquad \mathbf{E} = \mathcal{E}^{\mathsf{T}} \mathcal{E}$$

- For two variables, we can visualize their size & shape with data ellipses
- For p=3 these display as ellipsoids
- For p>2 can use an HE-plot matrix

Data ellipses for H & E

How big is H relative to E? How to make them comparable?

http://www.datavis.ca/gallery/animation/manova

HE plot: effect scaling

- Center: shift to centroid
- Plot: 68% data ellipses

For each predictor, the data ellipse degenerates to a line (rank H: s=1)

- Orientation: how x_i contributes to prediction of y_1, y_2
- Length: relative strength of relation

HE plot: significance scaling

Scale:

29

- E: E/df_ • H: H/df_e λ_{α}
- λ_{α} = critical value of Roy statistic at level a

 \rightarrow any **H** ellipse will protrude beyond E ellipse iff effect is significant at level a

Directions of Hs show how predictors contribute to responses

PPVT 21 Raven 34

Homogeneity of regression: Univariate

- With 2+ groups there are several hypotheses of interest
 - equal slopes: no group * X interaction
 - equal means: no group "main effect"
 - equal slopes and means (same regression lines)
- ANCOVA: Test equal means, assuming equal slopes

36

3D HE plot

all

In the R version (heplots package), 3D plots can be rotated dynamically

In this view, we see NA poking out beyond the E ellipsoid

Homogeneity of Regression: Multivariate

- When there are several groups, we often want to test hypotheses of "homogeneity":
 - equal slopes for the predictors (interactions)?
 - equal intercepts for groups (same means)?
 - equal slopes & intercepts (coincident regressions)?

<pre>* test equal slopes, by allowing interactions (separate slopes for each group) proc glm data=rohwer; class SES; model sat ppvt raven = SES n SES s SES ns SES ns SES ss /ss3 nouni; manova h=SES*n SES*ns SES*ns SES*ns SES*ss; run; test all interactions</pre>	;
<pre>* MANCOVA model: test intercepts (means), assuming equal slopes; proc glm data=rohwer; class SES; model sat ppvt raven = SES n s ns na ss /ss3 nouni; manova h=_all_; run;</pre>	

NB: better than reporting separate results and making "eyeball" comparisons

HE plots: Homogeneity of regression

Rohwer data: Lo (n=32) & Hi (n=37) SES groups:

- Fit separate regressions for each group
- Are slopes the same?
- Are intercepts the same?
- Are regressions coincident? (equal slopes and intercepts)

Here, slopes for NS are similar; most others seem to differ, but only NA is signif.

Intercepts (means) clearly differ.

37

HE plots: MANCOVA model

HE plots: MANCOVA model

Alternatively, we can fit a model that assumes **equal** slopes for both SES groups, but allows unequal intercepts

From the ANOVA view, this is equivalent to an analysis of covariance model, with group effect and quantitative predictors

РРИТ

If the main interest is in the SES effect, the MANCOVA test relies on the assumption of equal slopes.

(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss

Nature vs Nurture: IQ of adopted children MMReg + Repeated measures

- Data from an observational, longitudinal, study on adopted children (n=62).
- Is child's intelligence related to intelligence of the biological mother and the intelligence of the adoptive mother?
- The child's intelligence was measured at age 2, 4, 8, and 13
- How does intelligence change over time?
- How are these changes related to intelligence of the birth and adoptive mother?

41

Treat as multivariate regression problem:

<pre>> Adopted.mo > Adopted.mo</pre>	od <- lm(cbi od	.nd(Age2IQ,	Age4IQ, Age	8IQ, Agel3IQ)	~ AMED + BMIQ, data=Adopted)
Call: lm(formula =	cbind(Age2	2IQ, Age4IQ,	Age8IQ, Ag	el3IQ) ~ AMED	+ BMIQ, data = Adopted)
Coefficients	:				
	Age2IQ	Age4IQ	Age8IQ	Age13IQ	
(Intercept)	117.63046	93.33771	88.03739	76.84827	
AMED	-0.44136	-0.02073	-0.01216	-0.16063	$= \mathbf{B}_{(2,1,4)}$
BMIQ	0.04001	0.22172	0.30961	0.36747	- (3 x 4)
What can	we tell fro	m this?			4

Scatterplots of child IQ vs. AMED and BMIQ

- Regression lines (red) show the fitted (univariate) relations
- Data ellipses: visualize strength of relations
- Blue lines: equality of child IQ and BMIQ

Multivariate tests of each predictor: $\beta_{AMED} = 0$; $\beta_{BMIQ} = 0$

> Maı	nova	A (Adopted.	mod)							
Type	II	MANOVA Te	sts: Pillai	test	statist	cic				
	Df	test stat	approx F nu	m Df	den Df	Pr(>F)				
AMED	1	0.01722	0.24535	4	56	0.91129				
BMIQ	1	0.17759	3.02320	4	56	0.02504	*			
Sign:	if.	codes: 0	`***′ 0.001	`**'	0.01	* 0.05	`.'	0.1	、 /	1

Conclusions from this:

- Birth mother IQ significantly predicts child IQ at these ages: $\beta_{BMIQ} \neq 0$
- Adoptive mother ED does not: $\beta_{AMED} = 0$

How to understand the nature of these relations?

AMED: Adoptive mother educ. (proxy for IQ)

BMIQ: Birth mother IQ

	Where these tests come from:		> pairs(Adopted.mod, hypotheses=list("Reg"=c("AMED", "BMIQ")))
	> linearHypothesis(Adopted.mod, c("BMIQ")) $\longrightarrow L = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$		
Η	$ \begin{array}{c} \text{Sum of squares and products for the hypothesis:} \\ & \text{Age2IQ} & \text{Age4IQ} & \text{Age4IQ} & \text{Age3IQ} \\ \text{Age2IQ} & 24.78808 & 137.3590 & 191.8035 & 227.6471 \\ \text{Age4IQ} & 137.35902 & 761.1521 & 1062.8471 & 1261.4684 \\ \text{Age8IQ} & 191.80350 & 1062.8471 & 1261.4684 \\ \text{Age3IQ} & 27.64710 & 1261.4684 & 1761.4719 \\ \text{Age1IQ} & 27.64710 & 1261.4684 & 1761.4719 & 2090.6499 \\ \end{array} $	3 ₀₄ 3 ₁₄	Age2IQ Age2IQ at Age2IQ at Age2IQ at Age2IQ at at at at at at at at at at
E	$ \begin{array}{c} \beta_{21} & \beta_{22} & \beta_{23} \\ \beta_{22} & \beta_{23} \\ \beta_{21} & \beta_{22} & \beta_{23} \\ \beta_{22} & \beta_{23} \\ \beta_{21} & \beta_{22} & \beta_{23} \\ \beta_{22} & \beta_{23} \\ \beta_{21} & \beta_{22} & \beta_{23} \\ \beta_{22} & \beta_{23} \\ \beta_{22} & \beta_{23} \\ \beta_{22} & \beta_{23} \\ \beta_{23} & \beta_{2$	3 ₂₄) 13	Age4IQ Agg4IQ Agg4IQ Agg4IQ Agg4IQ Agg4IQ Agg4IQ Agg4IQ Agg4IQ
	Multivariate Tests: Df test stat approx F num Df den Df Pr(>F) Pillai 1 0.1775928 3.0231979 4 56 0.025038 * Wilks 1 0.8224072 3.0231979 4 56 0.025038 * Hotelling-Lawley 1 0.2159427 3.0231979 4 56 0.025038 *		AMED 4 AMED 448 Age8IQ 80
	 Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1		AMED AMED AMED AGe13IQ
		45	46

Repeated measures analysis

- Because Age is a quantitative factor, we can use it in a multivariate trend analysis.
- This amounts to analysis of **Y M**, where **M** comes from

	2	2 ²	2 ³	
м_	4	4 ²	4 ³	
	8	8 ²	8 ³	
	13	13 ²	13 ³	

- This gives tests of linear, quadratic & cubic trends of IQ in relation to AMED and BMIQ
- Interactions– AMED*Age & BMIQ*Age test for equal slopes over Age

> # Treat IQ > Age <- data > Anova(Adop)	at different ages a.frame(Age=ordered ted.mod, idata=Age,	as a repe (c(2,4,8, idesign=	ated measure factor 13))) ~Age, test="Roy")	
Type II Repea	ated Measures MANOV	A Tests:	Roy test statistic	
Df	test stat approx F	num Df de	en Df Pr(>F)	
AMED 1	0.0019 0.1131	1	59 0.737878	
BMIQ 1	0.1265 7.4612	1	59 0.008302 **	
Age 1	0.7120 13.5287	3	57 8.91e-07 ***	
AMED:Age 1	0.0143 0.2718	3	57 0.845454	
BMIQ:Age 1	0.1217 2.3114	3	57 0.085792 .	
Signif. code:	s: 0 `***′ 0.001 `	**′ 0.01	`*' 0.05 `.' 0.1 ` ' 1	

HE plots: software

SAS macros

- See: Friendly (2006): Data ellipses, HE plots ..., <u>http://www.jstatsoft.org/v17/i06/</u>
- heplots, hemreg, hemat: <u>http://www.math.yorku.ca/SCS/sasmac/</u>

R packages

- See: Fox et al (2007): Visual hypothesis tests in MLMs... <u>http://www.math.yorku.ca/SCS/Papers/dsc-paper.pdf</u>
- heplots & car packages: <u>http://www.r-project.org/</u>

Summary

- MMRA → multivariate tests for a collection of p responses, each in up to s dimensions
 - Different test statistics combine these in different ways, to say how big is H vs E
 - Canonical analysis: How many dimensions of Ys are predicted by the Xs?
 - HE plots → visualize the relations of responses to the predictors
- These methods generalize to all linear models: MANOVA, MANCOVA, etc.