

Multivariate analysis of variance

Michael Friendly Psychology 6140

One-way MANOVA

- p responses, 1 "factor" (IV), g groups
 - $H_o: \underline{\mu}_1 = \underline{\mu}_2 = \dots \underline{\mu}_g$
 - H1: at least one group centroid is different
- Assumptions:
 - Independent groups, independent observations
 - Responses are independent, multivariate normal w/in each group
 - Pop. covariance matrices are equal across groups
 - $H_0: \Sigma_1 = \Sigma_2 = ... = \Sigma_g$
 - (Σ estimated by E / dfe)
 - (tested by e.g., Box's test, proc discrim pool=test or heplots::boxM)
 - $\rightarrow \mathbf{y}_{ij (p \times 1)} \sim N (\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma})$

One-way ANOVA vs. MANOVA

Assume equal withingroup variances

How do means differ?

Figure 8.1. The simple anova situation, when the differences among the populations are "real." source: Cooley & Lohnes ((1971)

Assume equal withingroup variancecovariance matrices

How do centroids differ?

How many dimensions?

Fundamental ideas

General linear model

 $\mathbf{Y}_{n \times p} = \mathbf{X}_{n \times q} \quad \mathbf{B}_{q \times p} + \mathcal{E}_{n \times p}$

- Tests: General linear hypothesis
 - H_0 : **L B M** = **0** \rightarrow SSP matrices for **H** & **E**
- How big is H relative to E?
 - Eigenvalues, λ_i of HE⁻¹ or θ_i of H(H+E)⁻¹
 - \rightarrow Wilks' Λ , Pillai & Hotelling trace, Roy's test
 - # of large dimensions (aspects of responses)
- HE plots: visualize multivariate tests
 - Shows size of dimensions (aspects of responses)
 - Relation to response variables

Figure 8.2. The simple manova situation, when the differences among the populations are "real."

3

GLM: the design matrix (X)

- In the full GLM, the design matrix (X) may consist of:
 - Quantitative regressors: age, income, education
 - Transformed regressors: √age, log(income)
 - Polynomial terms: age², age³, ...
 - Categorical predictors ("factors", class variables): treatment (control, drug A, drug B), sex
 - Interactions: treatment * sex, age * sex

ANOVA/MANOVA: Where does X come from?

GLM: Factors and contrasts

- In the GLM, the design matrix X can be constructed entirely from contrasts for each factor separately;
- # (contrasts) = df

What are contrasts?

For a factor with r levels, a contrast is a weighted sum, L, of the means, with weights, c, that sum to zero

 $L = \mathbf{c}' \, \mathbf{\mu} = \Sigma \, \mathbf{c}_i \, \mu_i$ such that $\Sigma \, \mathbf{c}_i = 0$

r=4

 $\begin{array}{rcl} L_1 = & (\mu_1 + \mu_2) - (\mu_3 + \mu_4) & \rightarrow \mathbf{C}_1 = (1 & 1 & -1 & -1)' \\ L_2 = & \mu_1 - \mu_2 & \rightarrow \mathbf{C}_2 = (1 & -1 & 0 & 0)' \\ L_3 = & \mu_3 - \mu_4 & \rightarrow \mathbf{C}_3 = (0 & 0 & 1 & -1)' \end{array}$

Any r-1 linearly independent contrasts → same overall test

Why contrasts work

- The inner product c' µ assesses the degree to which the means in µ have the same pattern as the weights in c.
 - It is 0 if they are "uncorrelated"

-1 -1 1

It is maximal if they are linearly related

```
# Contrasts with y1
# create linear, guadratic and cubic contrasts
                                                   > C %*% yl
c1 < -c(-3, -1, 1, 3)
                                                   cl (lin)
                                                                  100
c2 <- c(1, -1, -1, 1)
                                                   c2 (quad)
                                                                     0
c3 <- c(-1, 3, -3, 1)
                                                   c3 (cubic)
                                                                     0
                                                   > C %*% y2
                                                                     #Contrasts with y2
C \leq rbind(c1, c2, c3)
rownames(C) <- c('c1 (lin)', 'c2 (quad)', 'c3 (cubic)')
                                                    cl (lin)
                                                                     0
                                                    c2 (quad)
                                                                  -40
# data-- means for 4 groups with different patterns
                                                   c3 (cubic)
                                                                     0
v1 <- c(10, 20, 30, 40) # linear means
                                                   > C %*% y3
                                                                      #Contrasts with y3
y2 <- c(20, 40, 40, 20) # quadratic means
                                                   cl (lin)
                                                                   50
y3 <- (y1 + y2)/2
                     # both
                                                   c2 (quad)
                                                                  -20
                                                                     0
                                                   c3 (cubic)
> C
           [,1] [,2] [,3] [,4]
cl (lin)
            -3 -1 1 3
```

c2 (quad)

c3 (cubic)

Properties of contrasts

- Associated with every contrast is a 1 df sum of squares, SS_L or rank=1 SSP_H = H matrix from the GLH
- Two contrasts are orthogonal if c'_i c_j =0 (and sample sizes are equal)
- For *r*-1 orthogonal contrasts, the SS_{Li} or SSP_{Hi} add to the SS for the overall hypothesis

 $SSP_{H} = SSP_{H1} + SSP_{H2} + \dots + SSP_{H(r-1)}$

- Well chosen contrasts facilitate interpretation of group diff^{ces} (vs. all pairwise tests)
- A *priori* contrasts can be tested without adjusting α level

9

Polynomial contrasts

Orthogonal polynomial contrasts are constructed by orthogonalizing the matrix

C= (1, X, X², X³, ...)

e.g. using Gram-Schmidt

These provide tests of trends, similar to poly. regression.

> 00	ter(1	:8, 0	:3, `	`)
	[,1]	[,2]	[,3]	[,4]
[1,]	1	1	1	1
[2,]	1	2	4	8
[3,]	1	3	9	27
[4,]	1	4	16	64
[5,]	1	5	25	125
[6,]	1	6	36	216
[7,]	1	7	49	343
[8,]	1	8	64	512
		lin	quad	cubic

Using contrasts in R

- R has 4 basic functions for generating contrasts for a factor
 - Dummy coding, aka "reference level", "treatment" contrasts
 - Deviation coding, aka "sum-to-zero" constraints
 - Polynomial contrasts for an ordered/quantitative factor
 - Helmert contrasts for ordered factor comparisons
- Defaults are set separately for unordered and ordered factors
- Define your own by assigning a matrix to contrasts(myfactor)
- These affect the tests of coefficients, but not overall tests

<pre>> contr.treatment(4) 2 3 4 1 0 0 0 2 1 0 0 3 0 1 0</pre>	<pre>> contr.sum(4) [,1] [,2] [,3] 1 1 0 0 2 0 1 0 3 0 0 1</pre>	<pre>> contr.poly(4)</pre>
4 0 0 1	4 -1 -1 -1	[4,] 0.6708 0.5 0.2236
<pre>> options("contrasts") \$contrasts</pre>	ordered r.poly"	<pre>> contr.helmert(4) [,1] [,2] [,3] 1 -1 -1 -1 2 1 -1 -1</pre>
See:http://www.ats.ucla.edu/stat/r/libr	ary/contrast_coding.htm	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Nested dichotomies

- Orthogonal contrasts can always be generated as nested dichotomies
- They correspond to independent research questions
- Sums of squares decompose the overall effect

Treatment		<i>c</i> 1	c2	C3	C4	č5	C6	C7
Brigadier mangels	μ_1	1	1	0	1	0	0	0
York globe mangels	μ_2	1	-1	1	0	0	0	0
Orange globe mangels	μ_3	1	-1	-1	0	0	0	0
Red intermediate mangels	μ4	1	1	0	-1	0	0	0
Mono rosa fodder beet	μ5	-1	0	0	0	1	1	1
Mono blanc fodder beet	μ6	-1	0	0	0	1	1	-1
Mono bomba fodder beet	μ7	-1	0	0	0	1	-2	0
Yellow daeno fodder beet	μ7	-1	0.	0	0	-3	0	0

13

More examples

Factorial designs + control group(s)

 Contrasts provide a way to analyze complex designs: A x B + control group(s)

Treat as a one-way, 5 group design. Use contrasts to analyze the A, B and A*B effects

	. C1	C_2	C3	CA
Control	-4	0	0	0
A, B,	1	١	1	ι
ABZ	1	1	-(-1
Az B1	1	-1	١	-1
A_2B_2	11	-1	-1	1
		Α	В	AB

Three treatments		C1	c2	1	Dre	uch vs No dreve
 Control sheep 	(No drench)	-2	0	1	-	
Sheep drenched or	ce (Drench)	1	-1	050	Dren	ch once is twice
3. Sheep drenched tw	rice (Drench)	1	1	\sim	~	
Four treatments		C1	0	G	110	Pad
1. Fan heater, brand	A (Convection)	1	1	0	110	WA AT LOUG
2. Fan heater, brand	B (Convection)	1	-1	0	14	vs B
3. Bar heater, brand	P (Radiation)	-1	0	1	CP	Q IV
4. Bar heater, brand	Q (Radiation)	-1	0	-1		
1. Lupins (Legum	e)	-3	0	0		l ike Helmert
2. Mustard (Non le	gume) (Noncereal)	1	$^{-2}$	0		Enternointent
3. Barley (Non le	gume) (Cereal)	1	1	-1		
4. Oats (Non le	gume) (Cereal)	1	1	1		
Five Treatments		c_1	C2	C3	C4	
1. Dacron (Synthe	tic Fibre)	3	-1	0	0	0 autoata
2. Terylene (Synthe	tic Fibre)	3	1	0	0	2 subsets
Cotton (Natura	I Fibre) (Plant fibre)	-2	0	-2	0	-
4. Angora (Natura	l Fibre) (Animal fibre)	-2	0	1	1	
5. Wool (Natura	l Fibre) (Animal fibre)	-2	0	1	-1	
1. Control	(No herbicide)	-4	0	0	0	
2. Systemic herbicide	A (Herbicide)	1	1	1	0	2x2 + control
3. Systemic herbicide	B (Herbicide)	1	1	-1	0	
4. Contact herbicide	X (Herbicide)	1	-1	0	1	
5. Contact herbicide	Y (Herbicide)	1	-1	0	-1	

Interactions from main effects

- For any factorial design, contrasts & X matrix columns for interactions are generated from those for the main effects
 - $df_{A^*B} = df_A * df_B = (a-1)(b-1)$
 - Contrasts for A*B are the (a-1)(b-1) products of each contrast for A with each contrast for B
 - They represent differences of differences

2 x 3 design:

	(a) Main	effect o	ontrasts	(b) Interaction contrasts $A \times B$		
	Factor A	Fac	tor B			
	<i>c</i> ₁	C2	C3	$c_4 = c_1 \times c_2$	$c_5 = c_1 \times c_3$	
μ1	-1	-2	0	2	0	
42	-1	1	-1	-1	1	
µ 3	-1	1	1	-1	-1	
44	1	-2	0	-2	0	
μ5	1	1	-1	1	-1	
46	1	1	1	1	1	

16

Interactions from main effects

Mathematically, this is generated by the Kronecker product (\otimes) of the one-way contrasts

$$C_{A} \otimes C_{B} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} -2 & 0 \\ 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 \times C_{B} \\ 1 \times C_{B} \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ -1 & -1 \\ -2 & 0 \\ 1 & -1 \\ 1 & 1 \end{pmatrix}$$

The full X matrix for any factorial design is the Kronecker product of all one-way X matrices

 $\mathbf{X}_{ABCD} = (\mathbf{1}, \mathbf{C}_{A}) \otimes (\mathbf{1}, \mathbf{C}_{B}) \otimes (\mathbf{1}, \mathbf{C}_{C}) \otimes (\mathbf{1}, \mathbf{C}_{D})$

22

Partial plots: visualize within-group scatter alone

HE plots: visualizing H & E (co)variation

Ideas behind multivariate tests: (a) Data ellipses; (b) H and E matrices

- *H* ellipse: data ellipse for fitted values, ŷ_{ij} = ỹ_j. *E* ellipse: data ellipse of residuals, ŷ_{ij} ỹ_j.

HE plots: visualizing multivariate tests

• $\lambda_i, i = 1, \dots, df_h$ show size(s) of **H** relative to **E**. Interview of the second sec

Example: Dog food- one way design

%include data(dogfo proc glm data=dogfo	ood); ood order=d	ata;		Univariat	e tests	
class formula; model start amou	int = for	mula / ss	3;	. M A +	1	
contrast 'Equali	ty of Grou	ps' form form form	ula 1 0 ula 1 0 ula 1 -1	0 -1, -1 0, 0 0;	3 df test overall t	t = æst
contrast 'Ours y contrast 'Old - contrast 'Major manova h=formula title2 'MANOVA 1	/s. Theirs' New' vs. Alps' ; for equalit	form form form y of mean	ula 1 1 ula 1 -1 ula 0 0 s';	-1 -1; 0 0; 1 -1;	1 df contr	asts
run;	\sim	-				
	\backslash					
Ν	1ANOVA test	S				24
						27
Multivariate tests of con	trasts:					
Hypothes	is of No Ove;	rall Ours	vs. Theirs	Effect		
Statistic	Value	F Value	Num DF	Den DF	Pr > F	
Wilks' Lambda	0 374715	0.19	2	11	0 0045	
Pillai's Trace	0.625285	9.18	2	11	0.0045	\checkmark
Hotelling-Lawley Trace	1.668694	9.18	2	11	0.0045	
Roy's Greatest Root	1.668694	9.18	2	11	0.0045	
Hypothes	is of No Ove	rall Old -	New Effec	t Dan DE	Da i E	
STATISTIC	vaiue	⊢ va⊥ue	NUM DF	Den DF	Pr > F	
Wilks' Lambda	0.752377	1.81	2	11	0.2091	×
Pillai's Trace	0.247623	1.81	2	11	0.2091	
Hotelling-Lawley Trace	0.329121	1.81	2	11	0.2091	
Roy's Greatest Root	0.329121	1.81	2	11	0.2091	
Hynothes	is of No Ove	rall Major	vs. Alps	Fffect		
nypotnes		arr major	.o. //Tho	211000		
Statistic	Value	F Value	Num DF	Den DF	Pr > F	
Wilks' Lambda	0.931490	0.40	2	11	0.6768	
Pillai's Trace	0.068510	0.40	2	11	0.6768	×
Hotelling-Lawley Trace	0.073549	0.40	2	11	0.6768	

Roy's Greatest Root

0.073549

0.40

Overall multivariate test:

e.g., 9.69 = 7.56 + 2.00 + 0.125

0.6768

26

11

2

Note: this is a case where multivariate tests differ. Why??

Characteristic H	c Roots ar = Type I E = Err	nd Vectors II SSCP Mat or SSCP Mat	of: E Inverse trix for formu trix	* H, where la	9	
Characteristic Root	Percent	Charact	teristic Vecto start	or V'EV= amount		
2.03961854 0.03174562	98.47 1.53	-0.102 0.169	279413 0. 973304 0.	04639418 02111246		
MANOVA Tes the Hypot	t Criteri hesis of	a and F App No Overall	proximations f formula Effec	or t		
	S=2	M=0 N=4	1.5			
Statistic	Value	F Value	e Num DF	Den DF	Pr > F	
Wilks' Lambda Pillai's Trace Hotelling-Lawley Trace Roy's Greatest Root	0.318866 0.701780 2.071364 2.039619	2.83 2.16 3.67 8.16	3 6 5 6 7 6 5 3	22 24 13.032 12	0.0341 0.0829 0.0234 0.0031	√ × √ (√
						25
Univariate tests of contra	asts:		Univariate te story, Why??	sts give a bl	eaker	
Univariate tests of contra Dependent Variable: star	asts: `t Time	to start ea	Univariate te story. Why?? ating	sts give a bl	eaker	1
Univariate tests of contra Dependent Variable: star Contrast	asts: `t Time DF Con	to start ea strast SS	Univariate te story. Why?? ating Mean Square	sts give a bl	eaker Pr > F]
Univariate tests of contra Dependent Variable: star Contrast Equality of Groups Ours vs. Theirs Old - New Major vs. Alps	asts: t Time DF Con 3 9. 1 7. 1 2. 1 0.	to start ex strast SS 68750000 56250000 00000000 12500000	Univariate te story. Why?? ating Mean Square 3.22916667 7.56250000 2.00000000 0.12500000	sts give a bl F Value 1.50 3.52 0.93 0.06	Pr > F 0.2634 0.0850 0.3534 0.8134	× × × ×
Univariate tests of contra Dependent Variable: star Contrast Equality of Groups Ours vs. Theirs Old - New Major vs. Alps Dependent Variable: amou	asts: T Time DF Con 3 9. 1 7. 1 2. 1 0. 1 0. 1 0.	to start ea trast SS 68750000 56250000 00000000 12500000	Univariate te story. Why?? ating Mean Square 3.22916667 7.56250000 2.00000000 0.12500000	sts give a bl F Value 1.50 3.52 0.93 0.06	eaker Pr > F 0.2634 0.0850 0.3534 0.8134	×××××××××××××××××××××××××××××××××××××××
Univariate tests of contra Dependent Variable: star Contrast Equality of Groups Ours vs. Theirs Old - New Major vs. Alps Dependent Variable: amou Contrast	asts: T Time DF Con 3 9. 1 7. 1 2. 1 0. Int Amou DF Con	to start ex strast SS 68750000 56250000 00000000 12500000 unt eaten strast SS	Univariate te story. Why?? ating Mean Square 3.22916667 7.56250000 0.12500000 0.12500000	F Value F Value 1.50 3.52 0.93 0.06 F Value	eaker Pr > F 0.2634 0.0850 0.3534 0.8134 Pr > F	×××××××××××××××××××××××××××××××××××××××
Univariate tests of contra Dependent Variable: star Contrast Equality of Groups Ours vs. Theirs Old - New Major vs. Alps Dependent Variable: amou Contrast Equality of Groups Ours vs. Theirs Old - New Major vs. Alps	asts: Time DF Con 3 9. 1 7. 1 2. 1 0. UNT Amou DF Con 3 585 1 473 1 84 1 28	to start ex strast SS 68750000 56250000 00000000 12500000 sint eaten strast SS 6.6875000 6.0625000 5.5000000 6.1250000	Univariate te story. Why?? ating Mean Square 3.22916667 7.56250000 2.00000000 0.12500000 0.12500000 0.12500000 0.1250000 84.5000000 28.1250000	sts give a bl F Value 1.50 3.52 0.93 0.06 F Value 6.00 14.55 2.60 0.86	eaker Pr > F 0.2634 0.0850 0.3534 0.8134 Pr > F 0.0097 0.0025 0.1329 0.3707	× × × × × × × × ×
Univariate tests of contra Dependent Variable: star Contrast Equality of Groups Ours vs. Theirs Old - New Major vs. Alps Dependent Variable: amou Contrast Equality of Groups Ours vs. Theirs Old - New Major vs. Alps NB: These are orthogona	asts: Time DF Con 3 9. 1 7. 1 2. 1 0. UF Con 3 585 1 473 1 84 1 28 Al contrast	to start ex strast SS 68750000 56250000 00000000 12500000 12500000 s. 6875000 s. 6875000 s. 6875000 s. 1250000 s. 1250000 s, SO	Univariate te story. Why?? ating Mean Square 3.22916667 7.56250000 2.00000000 0.12500000 0.12500000 0.12500000 4.30025000 84.5000000 28.1250000	sts give a bl F Value 1.50 3.52 0.93 0.06 F Value 6.00 14.55 2.60 0.86	eaker Pr > F 0.2634 0.0850 0.3534 0.8134 Pr > F 0.0097 0.0025 0.1329 0.3707	

Visualizing the results: data ellipses

Data ellipses show between- & within-group variation

covEllipses(dogfood[,c("start", "amount")], dogfood\$formula)

- means of start inversely related to
 amount
- within-group covariance matrices
 (Σ) don't look very equal!

Visualizing the results

Univariate plots of means tell a part of the story

%meanplot(data=dogfood, var=start amount, class=formula);

Visualizing the results: HE plots

HE plots show a sufficient visual summary

Visualizing the results: HE plots

HE plots with contrasts show the breakdown of effects

"Alps vs. Major"="formula3"))

Assumptions: homogeneity of (co)variance

- For univariate t-test or ANOVA, we assume equal variance within groups
 - $s_1^2 = s_2^2 = \dots = s_g^2 \rightarrow s_{pooled}^2$ or MSE
 - Box test or Levine's test often used
 - Visual test: spread-level plot
- Multivariate tests: translates to equality of within-group covariance matrices,
 - $S_1 = S_2 = ... = S_g \rightarrow S_{pooled} = E$ matrix

• Box test:
$$H_0: \Sigma_1 = \Sigma_2 = ... = \Sigma_g$$

$$\mathbf{v} = \frac{\prod |S_i|^{N/2}}{|S|^{N/2}_{pooled}} \longrightarrow \chi^2 \text{ with } (g-1)p(p+1)/2 \text{ df}$$

- SAS: proc discrim, pool=test option
- R: boxM() in heplots package
- NB: Box's test very susceptible to non-normality
- Visualize: data ellipses

ν

Testing homogeneity of (co)variance

proc discrim data=dogfood

pool=test; class formula; var start amount:

run;

The DISCRIM Procedure Test of Homogeneity of Within Covariance Matrices Chi-Square DF Pr > ChiSq

5.689160 9 0.7706

Since the Chi-Square value is not significant at the 0.1 level, a pooled covariance matrix will be used in the discriminant function.

R:

```
dog.mod <- lm(cbind(start, amount) ~ formula, data=dogfood)
boxM(dog.mod)
Box's M-test for Homogeneity of Covariance Matrices
data: dogfood[, c("start", "amount")]
Chi-Sq (approx.) = 5.6892, df = 9, p-value = 0.7706
```


Assumptions: Normality

We assume residuals, E = Y-XB are multivariate normal
 Easiest to check with a χ² QQ plot

library(heplots) cqplot(dog.mod, id.n=2)

If you make only 1 diagnostic plot, it should be this!

cqplot() also provides robust versions using MVE and MCD estimates

Ex: Social cognitive measures in schizophrenia

Three diagnostic groups: Schizophrenic, SchizoAffective, Control Contrasts: (a) Control vs. others; (b) Schizophrenic vs. SchizoAffective

Canonical HE plots: Low-D views

- As with biplot, we can visualize MLM hypothesis variation for *all* responses by projecting *H* and *E* into low-rank space.
- Canonical projection: $\mathbf{Y}_{n \times p} \mapsto \mathbf{Z}_{n \times s} = \mathbf{Y} \mathbf{E}^{-1/2} \mathbf{V}$, where \mathbf{V} = eigenvectors of $\mathbf{H} \mathbf{E}^{-1}$.
- This is the view that maximally discriminates among groups, ie max. *H* wrt *E* !

Canonical HE plots: Low-D views

- Canonical HE plot is just the HE plot of canonical scores, (z₁, z₂) in 2D,
- or, z₁, z₂, z₃, in 3D.
- As in biplot, we add vectors to show relations of the **y**_i response variables to the canonical variates.
- variable vectors here are structure coefficients = correlations of variables with canonical scores.

HE plot example: Romano-British pottery

- Tubb, Parker & Nicholson used atomic absorption spectroscopy to analyze the chemical composition of 26 samples of Romano-British pottery found at four kiln sites in Britain.
 - Sites: Ashley Rails, Caldicot, Isle of Thorns, Llanedryn
 - Variables: aluminum (AI), iron (Fe), magnesium (Mg), calcium (Ca) and sodium (Na)
 - ullet ightarrow One-way MANOVA design, 4 groups, 5 responses
- Can the content of AI, Fe, Mg, Ca and Na be used to differentiate the sites?
- R> library(heplots)

_ _ _

- R> Manova (pottery.mod)
- Type II MANOVA Tests: Pillai test statistic

```
Df test stat approx F num Df den Df Pr(>F)
Site 3 1.5539 4.2984 15 60 2.413e-05 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

HE plot matrix: all bivariate views

R> pairs(pottery.mod)

Canonical HE plot

- Canonical HE plots provide 2D (3D) visual summary of H vs. E variation
- Pottery data: p = 5 variables, 4 groups $\mapsto df_H = 3$
- Variable vectors: Fe, Mg and Al contribute to distingiushing (Caldicot, Llandryn) from (Isle Thorns, Ashley Rails): 96.4% of mean variation
- Na and Ca contribute an additional 3.5%. End of story!

50

Two-way MANOVA: Plastic film data

- Data from an experiment to deterime the optimal conditions for extruding plastic film.
 - Factors: Rate of extrusion (low/high), amount of additive (low/high)
 - Responses: Tear resistance, film gloss, opacity
 - \rightarrow 2 × 2 MANOVA design, 3 responses, n = 5 per cell.
- HE plots show main effects, interactions and linear hypotheses in relation to each other

```
R> plastic.mod <- lm(cbind(tear, gloss, opacity) ~
                 rate*additive, data=Plastic)
R> Manova(plastic.mod, test.statistic="Roy")
Type II MANOVA Tests: Roy test statistic
             Df test stat approx F num Df den Df
                                                   Pr(>F)
rate
              1
                   1.6188
                            7.5543
                                        3
                                              14 0.003034 **
                   0.9119
                            4.2556
                                        3
additive
              1
                                              14 0.024745 *
rate:additive 1
                   0.2868
                            1.3385
                                        3
                                              14 0.301782
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Two-way MANOVA: Plastic film data

3D HE plots: Plastic film data

- 3D HE plot shows ellipsoids for *H* and *E* matrices
- 1 df hypotheses \mapsto lines
- 2 df hypotheses \mapsto ellipses
- heplot3d function provides interactive rotation
- This view shows the significant main effects of rate and additive

Summary

- MANOVA: Just another GLM
- All tests:

 $\mathbf{Y}_{n \times p} = \mathbf{X}_{n \times q} \quad \mathbf{B}_{q \times p} + \mathcal{E}_{n \times p}$

 H_0 : L B M = 0 \rightarrow SSP matrices for H & E

- Contrasts: Give X, provide interpretable tests
- Test statistics: How big is H relative to E?
- Visualize: HE plots
 - # of large dimensions
 - Relation to response variables
 - Canonical views: space of largest diffces