Probability

Where to go from here?

" What we've learned so
far?
= Tools for expressing,

fitting, & understanding
linear models,y =X B + €

= Model selection methods

= What we still have to

learn?
= Details for ANOVA

= Multivariate extensions
(MANOVA, MMReg)

= Models for categorical

e Michael Friendly J

responses
= QOther related methods

" Today, we’'ll consider one
simple extension:
categorical responses

= Model diagnostic methods

® So far this has been in
the context of regression

Models for quantitative and categorical variables

Dependent variables
Independent Quantitative Categorical
variables y=XB g(y)=XB
Quantitative Regression Logistic regression
log (Lj =XB
1-p

Categorical ANOVA Loglinear models
(factors) log(f)=X B
Both Reg. w/ dummy vars General linear logistic model

ANCOVA

Homogeneity of regression

Fitting & graphing in R

Obiject-oriented approach in R:

= dlm()
atlgg';tme - polr() = model
f i multinam() object |

@ Fitmodel (obj <- glm(...))— a model object

@ print (cbj) and summary (cbj) — numerical results

@ anova (obj) and Anova (obj) — tests for model terms

@ update (obj), addl (obi), dropl (obj) for model selection

Plot methods:
@ plot (ob7) often gives diagnostic plots
@ Other plot methods:
e Mosaic plots: mosaic (ob7) for "loglm" and "glm" objects
e Effect plots: plot (Effect (obj)) for nearly all linear models
@ Influence plots (car): influencePlot (cbj) for "glm" objects




Logistic regression

" The classical linear model assumes the response, Y, to
be a quantitative variable

" In some cases, however, the response is categorical or
dichotomous (binary outcome):
= |Improve vs. no improvement after treatment
= Patient lives vs. dies
= Applicant succeeds vs. fails
® Polytomous responses (later):
= |mprove: None, Some, Marked (ordered)
= Women'’s paid work: none, part-time, full-time
= Vote for: NDP, Liberal, Tories, Green (unordered)

Logistic regression models

m Response variable:

m Binary response: success/failure, vote: yes/no

m Binomial data: = successes in 1 trials (grouped data)
m Ordinal response: hone, some, severe depression

m Polytomous response: vote Liberal, Tory, Aliance, NDP

m Explanatory variables:

m Quantitative regressors: age, dose

m Transformed regressors: \/W log(dose)

m Polynomial regressors: ageg, age3, e

m Categorical predictors: freatment, sex

m Interaction regessors: treatment x age, sex X age

For explanatory variables, this is the same as in ordinary linear models

Arthritis treatment data

@ The response variable, Improved

AR ¥ is ordinal: "None" < "Some" <

"Marked"

@ A binary logistic model can
consider just Better =
(Improved>"None")

@ Other important predictors: Sex,
Treatment

@ Main Q: how does treatment affect
outcome?

@ How does this vary with Age and
Sex?

oa0- o e RVo Rl @ This plot shows the binary
+ 5 = observations, with several
Aae model-based smoothings

Binary response: what's wrong with OLS?

@ For a binary response, Y < (0,1),
want to predict 7 = Pr(Y = 1] x)
@ A linear probability model uses
classical linear regression (OLS)
@ Problems: .
o Gives predicted values and Cls  §
outside0 < 7 < 1
@ Homogeneity of variance is

1.0+ P S L] ﬂ*ﬂc

violated: V(7)) = #(1 — 7) # 001 L e A
constant

@ Inferences, hypothesis tests are
wrong! s

T T T
25 50 75

Age




OLS vs. Logistic

OLS regression:
* Assume y|x ~ N(0, o?)

Fig. 2.1. Graphical representation of a simple linear normal regression.

Logistic regression:
* Assume Pr(y=1|x) ~ binomial(p)

=

——

Fig. 2.2. Graphical representation of a simple linear logistic regression.

Logistic regression: binary response

@ Logistic regression avoids these
problems

@ Models logit(m;) = log[= /(1 — )]  °™]

@ logit is interpretable as “log odds”
that Y =1

@ A related probit model gives very
similar results, but is less
interpretable 025

@ For 0.2 < 7 < 0.8 fitted values are
close to those from linear
regression. i R R At

%D.Eﬂ*

|
50 75
Age
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Probabillities, odds & logits

m=Prob(y=1) Odds = m/(1- m) Logit = log[t/(1- 17)]
.05 5/95 = 0.0526 -2.94
.10 1/9 =0.1111 -2.20
.30 3/7=0.4286 -0.85
.50 565=1 0.00
.70 7/3 =2.333 0.85
.90 9/1=9 2.20
.95 95/5 =19 2.94

 Prob: symmetric around p=0.5
* Logit: symmetric around logit(p) =0 1

Logistic regression: One predictor

For a single quantitative predictor, x, the simple linear logistic regression
model posits a linear relation between the log odds (or logit) of Pr(Y = 1)

and x,
() =a-+ X .
1 —7(x)
@ When 5 > 0, 7(x) and the log odds increase as x increases; when 7 < 0

they decrease with x.
@ This model can also be expressed as a model for the probabilities = (x)

logit[=(x)] = log (

1
T 1 exp[—(a+ 8X)]

7(x) = logit™'[x(x)]

12




Logistic regression: One predictor

The coefficients of this model have simple interpretations in terms of odds and
log odds:

@ The odds can be expressed as a multiplicative model

odds(Y — 1) = "X

1-7(x) exp(a + 4x) = e*(e”)* . 1)

Thus:

@ Jis the change in the log odds associated with a unit increase in x.

@ The odds are multiplied by e for each unit increase in x.

@ o is log odds at x = 0; e” is the odds of a favorable response at this
x-value.

@ In R, use exp (coef (ob7j)) to get these values.

@ Another interpretation: In terms of probability, the slope of the logistic
regression curve is Sw(1 — )

Logistic regression models are the special case of generalized linear models,

fitin Rusing glm(..., family=binomial)
For this example, we define Retter as any improvement at all:

data ("Arthritis", package="vcd")
Arthritis$Better <- as.numeric (Arthritis$Improved > "None")

Fit and print:

arth.logistic <- glm(Better ~ Age, data=Arthritis, family=binomial)
arth.logistic

#4

## Call: glm(formula = Better " Age, family = binomial, data = Arthritis)
#4

## Coefficients:

## (Intercept) Age

## -2.6421 0.0492

##

## Degrees of Freedom: 83 Total (i.e. Null); 82 Residual

## Null Deviance: 116

## Residual Deviance: 109 AIC: 113

@ This has the maximum value 3/4 at = = 1
13 14
The summary () method gives details: Interpreting coefficients
summary (arth.logistic)
##
## Call: : 2 "
## glm(formula = Better ~ Agb, family = binomial, data = Arthritis) coef (arth.logistic) exp (coef (arth.logistic)
##
44 Deviance Residuals: ## (Intercept) Age ## (Intercept) Age
it . 10 Median 30 - ##  -2.642071 0.049249 ## 0.071214 1.050482
#4# -1.5106 -1.1277 0.0794 1.0677 1.7611 I
s exp (10+coef (arth.logistic) [2]
#4# Coefficients:
+# Estimate Std. Error z value Pr(>|z]) ## Age
## (Intercept) —2.6421 1.0732  -2.46 0.014 =* ) i aletiad
## Age 0.0492 0.0194 2.54 0.011 = Interpretations:
4 ——— . B
#4 Signif. codes: 0 'sws® 0.001 'xx' 0.01 "' 0.05 '.' 0.1 ' ' 1 @ log odds(Better) increase b;g_.ﬁf 0.0492 for each year of age
ai @ odds(Better) multiplied by e” = 1.05 for each year of age— a 5%
#+ (Dispersion parameter for binomial family taken to be 1) increase
#4# g B
o Null deviance: 116.45 on 83 degrees of freedom ) ovgr jO years, odds(Better) are multiplied by exp(10 x 0.0492) = 1.64, a
## Residual deviance: 109.16 on 82 degrees of freedom 64% increase.
#4 ATIC: 113.2 @ Pr(Better) increases by 3/4 = 0.0123 for each year (near = = %)
#4#
## Number of Fisher Scoring iterations: 4
i 2
Why do | get z tests? Where is my R2? 15 16




Logistic regression: Multiple predictors

@ For a binary response, Y € (0.1), let x be a vector of p regressors, and
wj be the probability, Pr(Y = 1| x).

@ The logistic regression model is a linear model for the log odds, or logit
that Y = 1, given the values in x,

logit(7;) = log (1 m_ﬁ_)
M

o +7XJ{3
= o+ X1 + PaXiz + - - - + BpXip

@ An equivalent (non-linear) form of the model may be specified for the
probability, 7, itself,

= {1 +exp(—[a+xTB])}
@ The logistic model is also a multiplicative model for the odds of “success,”

¥
1— 7

— exp(a + x| 8) = exp(a) exp(x 3)

Increasing xj by 1 increases logit(w;) by /3, and multiplies the odds by e%.

Arthritis data: Multiple predictors

The main interest here is the effect of Treatment. Sex and Age are control
variables. Fit the main effects model (no interactions):

logit(m;) = o + B1Xj1 + PaXiz + PaXi2

where X; is Age and x; and x3 are the factors representing Sex and
Treatment, respectively. R uses dummy (0/1) variables for factors.

&
X — 1

@ o doesn't have a sensible interpretation here. Why?

@ /3;:increment in log odds(Better) for each year of age.

@ (.. difference in log odds for male as compared to female.
@ (5 difference in log odds for treated vs. the placebo group

if Female o — 0 if Placebo
if Male 371 1 if Treatment
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Fit the main effects model. Use T (Age—-50) to center Age, making «
interpretable.

arth.logistic2 <- glm(Better ~ I(RAge-50) + Sex + Treatment,
data=Arthritis, family=binomial)

coeftest () inImtest gives just the tests of coefficients provided by
summary () :

library (Imtest)
coeftest (arth.logistic2)

##

## z test of coefficients:

##

#¥ Estimate Std. Error z value Pr(>|z]|)

## (Intercept) -0.5781 0.3674 -1.57 0.116

## I(Age - 50) 0.0487 0.0207 2.36 0.018 =

## SexMale -1.4878 0.5948 -2.50 0.012 «*

## TreatmentTreated 1.7598 0.5365 BINS 0.001 =«

## ———

## Signif. codes: 0 "xxx' 0.001 '«x' 0.01 '+' 0.05 '." 0.1 " ' 1
NB: Female is ref. category for Sex; Placebo for Treatment 19

Interpreting coefficients

cbind (coef=coef (arth. logistic2),
OddsRatio=exp (coef (arth.logistic2)), exp(confint (arth.logistic2)))

#4# coef OddsRatio 2.5 % 97.5 %
## (Intercept) -0.5781 0.561 0.2647 1.132
## I(Age - 50) 0.0487 1.050 1.0100 1.09e
## SexMale -1.4878 0.226 0.0652 0.689
## TreatmentTreated 1.7598 5.811 2.1187 17.727

@ o = —0.578: At age 50, females given placebo have odds(Better) of
e 0578 — 056,

@ [y = 0.0487: Each year of age multiplies odds(Better) by %0487 = 1 05,
a 5% increase.

@ 3 = —1.49: Males e 4% = 0.26 x less likely to show improvement as
females. (Or, females e'4? = 4,437 x more likely than males.)

@ 33 = 1.76: Treated e'-76=5.81 x more likely Better than Placebo

20




Estimation & hypothesis tests

® Ordinary regression model is fit by least squares,
because it has optimal properties
= Unbiased: E(b) =B
= Consistent: b - Bas N — «
= Minimum variance: Var(b) < any other method

" These properties are attained for logistic regression
when fit by maximum likelihood
= Qverall F tests — L.R. x2 tests
* Partial t tests — Wald x? or z tests

= max. likelihood used almost everywhere else, other than
classical regression/ANOVA

21

Maximum likelihood estimation

= Likelihood (£) = Pr (data | model), as function of model parameters
" Forcasei,

- ifY =1
ﬁ_{ P

— =p"i(l—p"
1-p ifY =0 p"(1-p")  where

p, =1/ (1+exp(x,B))

= Assuming independence, joint likelihood is product over all cases
n
Y, Y,
L= H P; (1_ pi)
i-1
® Find estimates that maximize £ but simpler for log £

ZYiXik:Zf’iXik = xTy:xTﬁ T TG
i X'y =Xy

Analogous to linear model,

22

Hypothesis testing: Questions

@ Overall test: How does my model, logit(7) = « + x'3 compare with the
null model, logit(w) = a?

HOZ;‘31 :'}2::.3{3:0

@ One predictor: Does x significantly improve my model? Can it be
dropped?
Ho : 3k = 0 given other predictors retained

@ Lack of fit: How does my model compare with a perfect model (saturated
model)?

For ANOVA, regression, these tests are carried out using F-tests and t-tests.
In logistic regression (fit by maximum likelihood) we use

@ F-tests — likelihood ratio G2 tests
@ t-tests — Wald z or \? tests

23

Hypothesis tests

= Likelihood ratio test (G2)

= Compare nested models, similar to incremental F
tests in OLS

= Let £, = maximized likelihood for our model
logit(z,) = B, + X[ B

= Let £, = maximized likelihood for null model
Iogit(”i):ﬂo under Ho:Bi=B, == =0

w/ k predictors

= | ikelihood-ratio test statistic:

G?= —2|og[%j =2(logL, —logL,) ~ %}

24




InL{a)

Other tests: Wald, score

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 24.3859 3 <.0001
Score 22.0051 3 <.0001
wald 17.5147 3 0.0006

Different ways to measure
departure fromHy,: B=0

* LR test: diff in log L
- Wald test:  (B—B,)>

* Score test: slope at =0

25

Wald tests & confidence intervals

® Analogous to t-tests in OLS
" Hy:Bi=0
z D,

~s(b,)

~ N(0,) or 22 ~ ;(12

(Wald chi-square)

= Confidence interval:
bk * ZlfaIZS(bk)

Analysis of Maximum Likelihood Estimates
Standard Wald
€.g., Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 |-4.5033 1.3074 11.8649 0.0006
sex Female 1 1.4878 0.5948 6.2576 0.0124
treat Treated 1 1.7598 0.5365 10.7596 0.0010
age 1 0.0487 0.0207 5.5655 0.0183 26

Plotting logistic regression data

Plotting a binary response together with a fitted logistic model can be difficult
because the 0/1 response leads to much overplottting.

@ Need to jitter the points

@ Useful to show the fitted logistic <1
curve

@ Confidence band gives a sense of
uncertainty

@ Adding a non-parametric (loess)
smooth shows possible
nonlinearity

@ NB: Can plot either on the B
response scale (probability) or the
link scale (logit) where effects are S 1_* 9% 8 sdSs Akl

|inea|’ 20 30 40 50 60 70 80

oot ot Wikt

Probability (Better)

Age

33

Full-model plots

Full-model plots show the fitted values on the logit scale or on the response
scale (probability), usually with confidence bands. This often requires a bit of
custom programming.
Steps:

@ Obtain fitted values with predict (model, se.fit=TRUE)—

type="1ink" (logit) is the default

@ Can use type="response" for probability scale

@ Join this to your data (cbind())

@ Plot as you like: plot (), ggplot (), - -

arth.fit2 <- cbind(Arthritis,
predict (arth.logistic2, se.fit = TRUE))
head (arth.fit2[,-9], 4)

## ID Treatment Sex Age Improved Better fit se.fit
## 1 57 Treated Male 27 Some 1 -1.43 0.758
## 2 46 Treated Male 29 None 0 -1.33 0.728
## 3 77 Treated Male 30 None 0 -1.28 0.713
## 4 17 Treated Male 32 Marked 1 -1.18 0.684

34




Full-model plots

Ploting on the logit scale shows the additive effects of age, treatment and sex

Female Male
LR o FRLA R . S % e

. L

I
2
1

=== Placebo
= Treated

Log odds (Better)
g
g

25+ /

These plots show the data (jittered) as well as model uncertainty (confidence
bands)

Full-model plots

Ploting on the probability scale may be simpler to interpret

Female Male
1.004 AR * ¢ S B * e B - .
~075-
ﬁ Treatment
2050 e Placebo
3 = Treated
8
2
Q g254
0008 8% , o w®Fs’ ot ®e® B Y L
T T T T T T T T T T
30 40 50 60 70 30 40 50 60 70
Age

These plots show the data (jittered) as well as model uncertainty (confidence
bands)

35 36
. . Female Male
Allow an interaction of Age x Sex g g
arth.logistic4 <- update (arth.logistic2, . + Age:Sex) 25
library (car)
Anova (arth.logistic4) -
B i Treatment

## Analysis of Deviance Table (Type II tests) & 00- B Fracebo
ik 3 = Treated
## Response: Better g
4 LR Chisg Df Pr(>Chisq) e ——
## I(Age — 50) 0 257
## Sex 6.98 1 0.00823 #+
#4# Treatment sabsieiel 0.00056 *x= [ Wt e JIRENE
## Sex:Age 3.42 1 0.06430 . .
$h - N o = @ 2w w4 @ @
44 Signif. codes: 0 "x%*' 0.001 "% 0.01 '+«' 0.05 '.' 0.1 ' ' 1 Age
Interaction is NS, but we can plot it the model anyway @ Only the model changes

@ predict () automatically incorporates the revised model terms

@ Plotting steps remain the same

@ This interpretation is quite different!

38
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Complex models: visreg and
effects packages

Provides a more convenient way to plot model results from the model
object

A consistent interface for linear models, generalized linear models, robust
regression, etc.

Shows the data as partial residuals or rug plots

Can plot on the response or logit scale

Can produce plots with separate panels for conditioning variables

library (visreqg)

visreg(arth.logistic2, ylab="logit (Better)", 54
24 24 24 -.--"h.
B . 8 ~ N -~
- . % v B
2 2 = 2 -
] g o g -
H g H
N ., | .
.. ~.
= . E
- M“"
s e o= s om [ e e T
Age Sex Treatment

@ One plot for each variable in the model

@ Other variables: continuous— held fixed at median; factors— held fixed

at most frequent value

@ Partial residuals (r;): the coefficient E in the full model is the slope of the

simple fit of r; on x;.
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. . . Plotting main effects:
Show a given effect (and low-order relatives) controlling for other model
effects. library (effects)
Data arth.eff2 <- allEffects(arth.logistic2)
; = . =] =)
PR a——— y i *Fitdata: Xf—=V plot (arth.eff2, rows=1, cols=3)
1 al ot F 1 4.73 4.46
% 2 32 M a .10 A58 . . Age effect plot Sex effect plot Treatment effect plot
3 3l d e 4.32 4.34 eScore data X*B=V*
4 L X 1 4.84 4.48
5 21 F 0 4.73 4.40 * plot vars: vary over range 08 07 L 08
20| 2 2 w 0 6.0 6.15 * control vars® fix at means g; a 0.6 - 5 07 4
0| 3 2 F 1 6.71 7.14 s o) v 057 B 5 0.6 -
§ g.i— ﬁ 04 7 I E 0.5
Score data RR— 03] > I o
02 0.2 4 L 0.3 -
ex  xlix2 v vhat=* Z 7 0.1 - 02+
n 8- ! ua 5030 ' - . I . 30 35 40 45 50 55 60 65 70 F ‘ I M‘I Pl ‘b T ‘ld
32 0.5 2 HA 4,971 - emale ale lacebo reates
33 0.5 3 un 4.912 plot Lt [ Age Sex Treatment
34 0.5 2 NA 3.437
35 0.5 4 nA 5.574 : r
36 0.5 6 NA 7.710 .\ i L
= wils W L
lot trol o
plotvars  control vars 41 42




Model with interaction of Age x Sex

plot (allEffects (arth.logisticd4), rows=1l, cols=3)

Age effect plot Treatment effect plot Sex"Age effect plot
L L \ 303540455055606570
) N A ey |
08 4 L s L Sex - Female Sex : Male
07 o 07 | .
_ 06 F . 06+ F 08 [
ﬁ 05 - ﬁ 05 Fg 064 r
04 4 L 04 4 L & 04 L
03 - o 03 r 02 -
02 - 02 4 r
T T
30 35 40 45 50 55 60 65 70 Placebo Treated 303540455055606570
Age Treatment Age

@ Only the high-order terms for Treatment and Sex*Age need to be
interpreted

@ (How would you describe this?)

@ The main effect of Age looks very different, averaged over Treatment and
Sex
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# fit model with all 2-way interactions

arth.logistic2 <- glm(Better ~ (Age + Sex + Treatment)"2, data=Arthritis,
family=binomial)

eff.logistic2<-allEffects(arth.logistic2)

plot(eff.logistic2)

Age*Sex effect plot Age*Treatment effect plot
W 40 s B0 70

1 L L L 1
Sex: Male

30 40 50 60 7O

L L L 1 1 1 1 L L 1 1 L L L
Sex: Female Treatrent : Placebo Treatment : Treated

Better
L
Better

1 L—‘WI/IIT L 1
T T T i

Flm 1w EI L1 1 1 I T 1
1 T T T T T T T T T 1 1

30 40 80 BO 7O

T
30 40 50 B0 YO0

Age Age
Sex*Treatment effect plot
Female Ilale
1

1 1
Treatment : Placebo

1
__Treatment : Treated

Better

Model diagnostics

As in regression and ANOVA, the validity of a logistic regression model is
threatened when:

@ Important predictors have been omitted from the model
@ Predictors assumed to be linear have non-linear effects on Pr(Y = 1)
@ Important interactions have been omitted

o A few “wild” observations have a large impact on the fitted model or
coefficients

Model specification: Tools and techniques

@ Use non-parametric smoothed curves to detect non-linearity
@ Consider using polynomial terms (X2, X2, ...) or regression splines (e.g.,
ns (X, 3))

@ Use update (model, 2

. ..) totest for interactions— formula: . ~ .
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In R, plotting a g1m object gives the “regression quartet” — basic diagnhostic
plots

arth.modl <—- glm(Better ~ Age + Sex + Treatment, data=Arthritis
family="binomial')
plot (arth.modl)

Residuals vs Fitted Normal Q-Q Scale-Location Residuals vs Leverage
- 7] 3o
o o il
5 ol goto B sz & oz 1o
‘\% @
°
. a s 7 5 o X s 7 Y,
. - I rd g - i ¢
ERR ey g 8 R
P e 3 B9 : "
o hd o -
% 2 - v g ! % o S
T4 \ B & © & o ©
s T4 . o
o g °
O o d ed o
= ¢ 733;;23 o | "7 - - " Cook's distance
T T T T T T T T T T = T T T T T T T T T T T T T ot
2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 000 004 003 0.12

Better versions of these plots are available in the car package
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Influence plots in R

Which cases are influential?

[None or Some | [Marked |

3
! [Some ] [Marked ]

L

l,ﬂiriiry {car) o T ID Treatment Sex Age Better StudRes Hat CookD
influencePlot (arth.logistic2) 1 57 Treated Male 27 1  1.922 0.08968 0.3358
15 66 Treated Female 23 0 =1.183 0.14158 0.2049
~ _630‘ \ 39 11 Treated Female 69 0 -2.171 0.03144 0.2626
Q e B T R R
oo O O OINGY)
a o) d ! @ O
o : Smg O
3 ) ® o 9o
3 ¢ | @ Xaxis: Leverage (“hat ¢’
values”)
g | @ Y axis: Studentized A
z © o 3 residuals - o
E &0 : \ a o &0 o
gy o > ° » | @ Bubble size ~ Cook D € o
1%¢ e (influence on coefficients) “© O~ O
© L% @ - 0 %0
o ; e
I *@""""' "'; 004 008 GHG:_\.‘;“BGWG 0.12 014
T T T T T T
0.04 0.06 0.08 0.10 0.12 0.14
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Polytomous responses: Overview Polytomous responses: Overview
When Response categories are:
_________ , m 1 categories — (m — 1) comparisons (logits)
'Unordered | .
"""" T m Response categories ordered, e g., None, Some, Marked improvement
for example, m Proportional odds model
No improvement ‘ , | None H Some or Marked |
F0f_d Some improvement e Uses adjacent-category logits
Smitherman Marked improvement | None or Some || Marked |
Pantelone e Assumes slopes are the same for all 112 — 1 logits; only intercepts vary
e s can v m Nested dichotomies | None || Some or Marked |
iWaitinomiai . [Proportional |
1Jogistic O |-~ = | e Model each logit separately
1 1
iregression | Nested | o G2 s are additive — combined model
e ettt \dichotomies | _
"""""" m Response categories unordered, e.g., vote NDP, Liberal, Tory, Aliance
womadel ¥iess logs: m Multinomial logistic regression
( [None ] [Some or marked | JlNone [Some or marked e Uses generalized logits (LINK=GLOGIT) in PROC LOGISTIC (V8.2+)
66 m Nested dichotomies 67




Ordinal response: proportional odds model

Arthritis treatment data:

Improvement
Sex Treatment None Some Marked Total
F Active 6 5 16 27
F Placebo 19 7 6 32
M Active 7 2 5 14
M Placebo 10 0 1 11

m Model logits for adjacent category cutpoints:

logit (/1) = log Tij1 = logit ( None vs. [Some or Marked] )
Tij2 — Tig3
) . W41+ g2 )
logit (f;52) = log = logit ( [None or Some] vs. Marked)
43

m Consider a logistic regression model for each logit:

|Og|t(H”1) = (¥q + J':I .Bl

m Proportional odds assumption: regression functions are parallel on the logit
scaleie, 81 = 3.
Proportional Odds Model

Pri="13

a

1.6 Priv=1)

Priv=2) =t
.o y _ Pr{y=2)
A Priv=3) = -~
B / ’
4 .~ A PriYy=3)
h . ,g 1 T
HO.5 B e
: K s P
b K 0 5 e
I‘j . Il
4 ! 7
9.4 ‘ Q
q i 4-1
[ ’ .
P ’
o.= —= .
.
.
-_.»’ —=21" -
0.0 R
—ai
o 20 40 [=g=] a0 100 o 20 40 s0 ao 100

FPredictor Fredictor

i.e., logits for adjacent response logit(6;,) = &, +x'; B
comparisons differ only in intercept . _
logit(6;,) = a, + X", B

— if true, simplifies interpretation

. ) I 38 69
logit(f;;0) = cva + @ 32
PrOpOFtIOI’]aJ OddS mOdeI f|tt| ng & p|0ttlng The response profile displays the ordering of the outcome variable.
Response Profile
- . . Ordered Total
Similar to binary response models, except: Value improve Frequency
m Response variable has m > 2 levels; output dataset has _LEVEL_ variable 1 2 28
m Must ensure that response levels are ordered as you want— use order=data or g (1) ig
descending options.
m Validity of analysis depends on proportional odds assumption. Test of this Test of Proportional Odds Assumption:
assumption appears in PROC LOGISTIC output. Score Test for the Proportional Odds Assumption
Example, using dependent variable improve, with values 0, 1, and 2: Chi-Square DF Pr > ChiSq
- 2.4916 3 0.4768
glogist2a.sas ---
1| proc logistic data=arthrit descending; - .
2 class sex (ref=last) treat (ref=first) / param=ref; Parameter estimates
3 model improve = sex treat age ; Analysis of Maximum Likelihood Estimates
4 output out=results p=prob l=lower u=upper Standard Vald
5 xbeta=logit stdxbeta=selogit / alpha=.33; Parameter DF  Estimate Error Chi-Square Pr > Chisgq
.: proc print data=results (obs=6); Intercept 2 1 -4.,6826 1.1949 15.3566 <,0001
. id id treat sex: Intercept 1 1 -3.7836 1.1530 10.7680 0.0010
- ’ . sex Female 1 1.2515 0.5321 5.5330 0.0187
s|  var improve _level_ prob lower upper logit; treat Treated 1 1.7453  0.4772 13.3774 0.0003
0 format prob lower upper logit selogit 6.3; age 1 0.0382 0.0185 4.2361 0.0396
“ . 71

run; D




To plot predicted probabilities in a single graph, combine values of TREAT and
_LEVEL_

Odds ratios: .-+ glogist2a.sas ---
R R 13 *—— combine lreatment and _Level_, set error bar color;
Odds Ratio Estimates |ldata results:
) , i set results;
Point 5_35/° Wald " treatl = trim(treat)||put(_level_,1.0);
Effect Estimate Confidence Limits . if treat=’Placebo’ then col=’BLACK’;
18 else col='RED’;
sex Female vs Male ﬂ 3.496 1.232 9.918 | proc sort data:results;
treat Treated vs Placebo €' 5.728 2.248 14.594 2 by sex treatl age;
age 1.039 1.002 1.077
---plot prob * age = treatl; by sex;
Output data set (RESULTS) for plotting: P — P ——
id treat sex 1improve _LEVEL_ prob  lower upper logit Fema
57 Treated Male 1 2 0.129 0.069 0.229 -1.907 5
57 Treated Male 1 1 0.267 0.157 0.417 -1.008 foo
9 Placebo Male 0 2 0.037 0.019 0.069 -3.271 i
9 Placebo Male 0 1 0.085 0.048 0.149 -2.372 He
46 Treated Male 0 2 0.138 0.076 0.238 -1.830
46 Treated Male 0 1 0.283 0.171 0.429 -0.931 o
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e et e o ot Proportional odds models in R
10 1.0
Female 7] Male
T A Trestedt
08 F ﬂ} Lt 08 L. .
o] o - @ Fitting: polr () in MASS package
g | d ] H I g _{{ Tresteat The response, Tmproved has been defined as an ordered factor
508 - T Gos P
= - - | L | Plsesbel | )
i A S i data (Arthritis, package="vcd")
§04 1 P H y §M P g Trested head (Arthritis$Improved)
g - ’ -1 - i ~1 Placebol g ~ -
& S H %1 LT L el e AT ## [1] Some None None Marked Marked Marked
T T (L4 = i ## Levels: None < Some < Marked
02 L %[{}H LA 02 |1y Fiscebat
oo ] 0.0 -
20 30 40 50 60 70 an 20 30 40 0 &0 0 ao
g Age
+ Age,
Interpretation:
« Effects of age, treatment and sex are similar to what we saw before
« There are substantial differences among the 3 response categories.
Intercept 2 here is for the distinction between none vs. (some, marked) 24 75




Proportional odds models in R

The summary () function gives standard statistical results:

> summary (arth.polr
Call:
poelr (formula = Improved ~ Sex + Treatment + Age, data = Arthritis)

Nested dichotomies

For an m category response, the m-1 comparisons can be represented
by m-1 logit models for a set of m-1 nested dichotomies among the
response categories.

= s
Coefficients: m=3 [None | [Someormarked | L, =Ilog—
Value 5Std. Error t value Arthritis T+,
SexMale -1.25168 0.54636 -2.2909 treatment I
TreatmentTreated  1.74529 0.47589 3.6674
Age Y Glo3ste 0.01842  2.0722 L =Ioga
Intercepts:
B Value Std. Error t value
None | Some 2.5319 1.0571 2.3952
Some |Marked 3.4309 1.0912 3.1442 m=4 L, = log s
e _
Res%duaJ: De*:'jn.an:'.e: 145.4579 F'sychiatﬁc |Norrna| | Manic Depressed Schiz | T+ + T,
ATIC: 155.4579 dhgnosh [ i
- = - :
* Results are similar, but less convenient than proc logistic (no p-values) Manic Depressed @‘JZ—I L= Ing, + T,
» Test of proportional odds assumption requires the VGLM package . |Manic 1 |De ey | L= fogE -
T
o o . 3 oo 5
Nested dichotomies Ex: Women'’s labour force participation
m ' categories — (m — 1) comparisons (logits)
m If these are formulated as [_'-m — 1) nested dichotomies: Data: Social Change in Canada Project , York ISR (Fox, 1997)
m Each dichotomy can be fit using the familiar binary-response logistic model, m Response: not working outside the home (n=155), working part-time (n=42) or
m the 112 — 1 models will be statistically independent ( 72 statistics will be working full-time (n=66)
additive)
m Model as two nested dichotomies:
1 2 3 4 1 2 3 4 m Working (n=106) vs. NotWorking (n=155)
/\ /\ A m Working full-time (n=66) vs. working part-time (n=42).
1 2 3 4 2 3 4 m Predictors:
© m Children? — 1 or more minor-aged children
m-1 ) .
m Husband's Income — in $1000s
G =>.G*(L) df,, = df(L) S|4 . .
a i ! a ! m Region of Canada (not considered here)
® This allows the slopes to differ for each logit
® Some hand-calculation is required for overall tests
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wlfpart.sas
proc format;

value labour /* labour-force participation */
1 =’working full-time’ 2 =’working part-time’
3 =’not working’;

value kids /¥ children in the household */
0 =’Children absent’ 1 =’Children present’;

data wlfpart;

input case labour husinc children region;

working = labour < 3;

if working then
fulltime = (labour = 1);

datalines;
1 3 15 1 3
2 3 13 1 3
3 3 45 1 3 labour working fulltime
4 3 23 1 3
5 3 19 1 3 1 1 1
6 3 7 1 3
7 3 16 1 3 2 1 0
g8 1 7 1 3 3 0
9 3 15 1 3

. more data lines ...

Ex: Women'’s labour force participation

First, try proportional odds model for 1abour

proc logistic data=wlfpart;
model labour = husinc children;
title2 ’Proportional 0dds Model: Fulltime/Parttime/NotWorking’

a

w

The score test rejects the Proportional Odds Assumption

Score Test for the Proportional Odds Assumption

Chi-Square DF
18.5638 2

Pr > ChiSq
<.0001

NB: The score test is anti-conservative: p-values often too small. Use with
caution.

80 81
. . . . Qutput for WORKING dichotomy:
Fitting ne sted dichotomies Rnalysis of Naximm Likeliood Hatimates
Parameter Standard Wald Pr > Odds
Variable DF Estimate Error Chi-Square Chi-Square Ratio
INTERCPT 1 1.3358 | 0.3838 12.1165 0.0005
i i i me- HUSING 1 -0.0423 | 0.0198 4.5751 0.0324 0.959
Fit separate models for each of working and fulltime: CHILDREN 1 Ls7ee | o 2903 29 0851 0 0001 o507
1| proc logistic data=wlfpart nosimple descending; )
2 model working = husinc children ; Output for FULLTIME dichotomy:
: ogtput out=resu1pw p=prgd1ct xbeta=logit; Analysis of Maximum Likelihood Estimates
4 title2 ’'Nested Dichotomies’;
5 Parameter Standard Wald Pr > Odds
¢ proc logistic data=wlfpart nosimple descending; Variable DF Estimate Error Chi-Square Chi-Square Ratio
7| model fulltime = husinc children ; _ INTERCET 1 3.4778 | 0.7671  20.5637 0.0001 .
8 output out=resultf p=predict xbeta=logit; HUSINC 1 -0.1073 [ 0.0392 7.5063 0.0061 0.898
CHILDREN 1 -2.6515 | 0.5411 24.0135 0.0001 0.071
m descending option used to model the Pr(Y = 1)
; Pr(workin
m output statement — datasets for plotting log 9) —  1.336 — 0.042HS — 1.576 kids
Pr(not working)
Pr(fulltime)
log | —— = 3478 — 0.107HS$ — 2.652 kids
Pr(parttime)
—H$ and kids have greater impact on full vs. parttime choice than on
82 83

working vs. not working




Combined tests for nested dichotomies

m Nested dichotomies — ',\/2 tests and df for the separate logits are independent

m — add, to give tests for the full 1m-level response

Global tests of BETA=0

Model visualization

m Join output datasets (resultsw and resultsf)
m Combine Response & Children — event
m plot logit * husinc = event; — separate lines

Women'’s labor-force particwEation: Canada 1977

Prob Working vs Mot Working and Fulltime vs. Parttime
Test Response Chisq DF ChiSq ad
Likelihood Ratio working 36.4184 2 <.0001 i ke
fulltime 39.8468 2 <.0001 £ o 185
ALL 76.2652 4 <.0001] ok a0
(Score & Wald tests deleted) 23 " . No Children
FCEm— T .80
Wald tests of maximum likelihood estimates S s S Tk }70
o ] BO-BEg. e Working 160
Prob g G_: Bmgg > s :jg
Variable Response WaldChiSq DF ChiSq g ] FEteg Fulltime “120
o -17 5 [
Intercept  working 12.1164 1 0.0005 ] T TEe— 120
fulltime 20.5536 1 <.0001 27 with Children e TT—a 410
ALL 32.8700 2 <.0001 1 T~ Working '
37 ~— 05
children working 29.0650 1 <.0001 ‘*“‘m.‘_‘
fulltime 24.0134 1 <.0001 4 =
ALL £3.0784 2 <.0001 1 Fullime
-5
husinc working 4.5750 1 0.0324 . ' : : . j
fulltime 7.5062 1 0.0061 84 0 10 2 # “© =0 85
ALL 12.0813 2 0.0024 Husband's Income
Alternatively, you can find the predicted probabilities for each response - . _ )
category and plot these in relation to the predictors. m Models the probabilities of the m response categories as 1 — 1 logits comparing
o ) . each of the first 1n. — 1 categories to the last (reference) category.
This is often easier to interpret.
m Logits for any pair of categories can be calculated from the 1 — 1 fitted ones.
Children absent Children present .
o o m With % predictors, @y, @0, ..., 2, forj =1,2,..., m— 1,
- m— not working " —
= = part-time iy p ; - e
3 - ful-time 2 Ljm =log (4_ ’ ) = Boj + By @i + Baj o + -+ 4 By Tik
Tim
£ o | 2 o | al
% < § = = .‘{5_’} €T
% S % S m One set of fitted coefficients, [3; for each response category except the last.
N N m Each coefficient, ‘-"Z))h:j, gives the effect on the log odds of a unit change in the
° I R e predictor ', that an observation belongs to category j vs. category 1m.
T . . . : <7 . . - m Probabilities are calculated as:
] 10 20 30 40 0 10 20 30 40
Husband's Income Husband’s Income (}Xl)(ﬁ;,’ri ]
Nij = 0 AT
86 Z-i:l f-h\lﬂ.ﬁj x;) 87




H SAS:

m In 8.2+, can use PROC LOGISTIC with LINK=GLOGIT option.
e output dataset — fitted probabilities, ﬁ-j for all 1 categories
e Overall tests and specific tests for each predictor, for all 112 categories

proc logistic data=wlfpart;
model labor = husinc children / link=glogit;
output out=results p=predict xbeta=logit;

m PROC CATMOD with RESPONSE=LOGITS statement.
e Same model, same predicted probabilities
e Different syntax, output dataset format, plotting steps

proc catmod data=wlfpart;
direct husinc;
model labor = husinc children;
response logits / out=results;

Ex: Women'’s labour force participation

Graphs:
og o
Children absent Children present

[1E:}

=

e

\

=

o
o
o

Fitte d probabiity
Fitted probabiity

=

"
o
=

03

1

o1

Not working
=

—

Par-iime
)

Full-time:
—w

0.0+ T T T r 0.0

Hushand's Income Hushand's Income
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Overall and Type Il tests:
wlfpartb.sas | Testing Global Null Hypothesis: BETA=0
1| title ’Generalized logit model’;
2| proc logistic data=wlfpart; Test Chi-Square DF Pr > ChiSq
3 model labor = husinc children / link=glogit; Likelihood Rati 7. 6108 4 e
- - : = . ikelihoo atio . .
4 output out=results p=predict xbeta=logit; Score 76. 4850 4 < 0001
Wald 58.4351 4 <.0001
Response profile:
Type III Analysis of Effects
Ordered Total
Value labor Frequency . Wald .
Effect DF Chi-8quare Pr > ChiSq
: : o husinc 2 12.8159 0.0016
4 children 2 53.9806 <.0001
3 3 155
Logits modeled use labor=3 as the reference category. These are comparable to the combined tests for the nested dichotomies models.
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output dataset results (for plots):

case labor husinc children _LEVEL_ logit

1 3 15 1 1 -2.03423
1 3 15 1 2 -1.30743
1 3 15 1 3 .

2 3 13 1 1 -1.83977
2 3 13 1 2 -1.32122
2 3 13 1 3 .

3 3 45 1 1 -4.95114
3 3 45 1 2 -1.10067
3 3 45 1 3 .

4 3 23 1 1 -2.81207
4 3 23 1 2 -1.25230
4 3 23 1 3 .

5 3 19 1 1 -2.42315
5 3 19 1 2 -1.27987
5 3 19 1 3 .

6 3 7 1 1 -1.25639
6 3 7 1 2 -1.36257

predict

[=]lefololalelolelelolefeololelole)e)]

.09333
.19305
.71363
.11142
.18715
.70143
.00528
.24830
. 74642
.04464
.21238
. 74298
.06486
.20346
.73168
.18478
.16616

NB: for each case, predicted probabilities of labor category sum to 1
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bW =

R R =1

Graphs:

--+ wlfpartb.sas
proc sort data=results; i inc _level_;

*== Curve labels;

%label (data=results, x=husinc, y=predict, cvar=_level_,
by=children, subset=last._level_, text=put(_level_, labor.)},
pos=2, out=labelsl);

*—— Panel labels;
#label(data=results, x=20, y=0.85,
by=children, subset=last.children, text=put(children, kids.),
pos=2, size=2, out=labels2);
data labels;
set labelsl labels2;
by children;

| goptions hby=0;

proc gplot data=results; plot predict * husinc = _level_ /
vaxis=axisl hm=1 vm=1 anno=labels nolegend;
by children;
axisl order=(0 to .9 by .1) label=(a=90);
symboll i=join v=circle c=black;
symbol2 i=join v=square c=red;
symbol3 i=join v=triangle c=blue;
run;
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Summary

" Logistic regression
= Extends regression to case of binary response
= Fit by max. likelihood, not OLS
* Ftests — L.R. x2 tests;
e ttests —» Wald 2
= Interpretation of coefficients:
» B; = increment to log odds Y=1 for Ax; =1
* exp(B;) = multiplier of odds ratio

" Polytomous response
= Qrdered response categories:
* Proportional odds model,
* nested dichotomies
= Unordered: Multinomial logistic regression
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