

Linear equations in multivariate analysis

Most problems in multivariate statistics involve solving a system of ۲ *m* equations in *n* unknowns

- When m=n and **A** is non-singular, solution is $\mathbf{x} = \mathbf{A}^{-1} \mathbf{b}$
- It is useful to understand the general ideas, as well as the underlying geometry
- Counting unknowns (parameters) and independent equations (data) is important in understanding statistical models

Linear equations in multivariate analysis

- Two cases appear in statistical applications:
- Non-homogeneous equations:

$$Ax = k$$

• The classic case is the general linear model, where we find estimates of regression coefficients and ANOVA effects by solving:

$$(X'X) \cdot b = X'y$$

- Homogeneous equations:
 - The classic case is in PCA/FA, where we find eigenvalues & eigenvectors by solving

$$(\mathbf{R} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$

Ax = 0

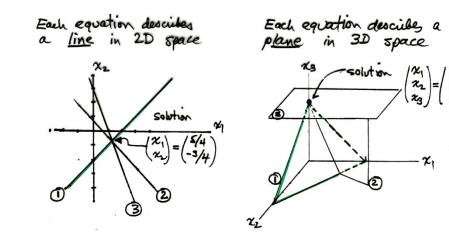
Linear equations: Examples

A) 2 Unknowns	3 Unknowns
$\Phi x_1 - x_2 = 2$	
(2) $2x_1 + 2x_2 = 1$	② x1 - x2 + 0.x3 = 0
(3) $3\chi_1 + \chi_2 = 3$	(a) $0.1x_1 + 0.x_2 + x_3 = 1$
Each equation describes a <u>line</u> in 2D space	Each equation describes a plane in 3D space
$ \begin{array}{c} $	x_3 solution $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} =$

3

= 0

Linear equations: Examples

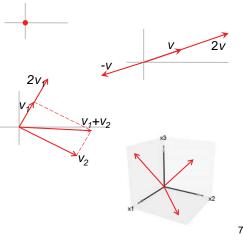


In these examples, we see that a solution (if one exists) corresponds to a **point** that lies on all three lines (in 2D) or in all three planes (3D) --- there they all **intersect** – thus satisfying **all** equations

Vector space lingo

Defⁿ: A vector space, V_n , is the space of dimension *n* of all linear combinations of some set of vectors

- V₀: v=(0, 0, 0, ...) -- a point
- V₁: any one vector -- a line
- V₂: any two linearly independent vectors a plane
- V₃: any 3 linearly independent vectors a volume



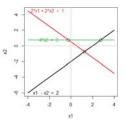
Geometric interpretation: 2D

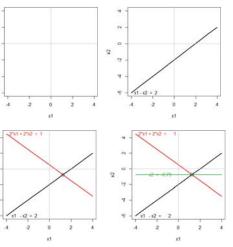
2

g

Two unknowns

- Solution space is 2D (V₂)
- 1 eqn: 1D subspace (V₁)
- 2 eqn: 2 1D subspaces
 - May intersect in a point (V₀)
 - Unique solution
- 3 eqn: 3 1D subspaces
 - May intersect in a point (V₀)
 - Or, be inconsistent





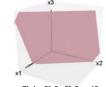
Geometric interpretation: 3D

Three unknowns

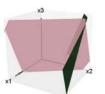
Solution space is 3D (V_3)

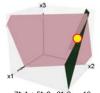
- 1 eqn: a 2D subspace (V₂)
 - a plane
- 2 eqn: 2 2D subspaces
 - may intersect in a line (V₁)
 - 3 eqn: 3 2D subspaces
 - may intersect in a point (V₀) unique solution

Each equation reduces solution space by 1 dimension (= 1 df)



 $7^*x1 + 5^*x2 - 3^*x3 = 16$





 $7^{*}x1 + 5^{*}x2 - 3^{*}x3 = 16$ $3^{*}x1 - 5^{*}x2 + 2^{*}x3 = -8$ $7^{*}x1 + 5^{*}x2 - 3^{*}x3 = 16$ $3^{*}x1 - 5^{*}x2 + 2^{*}x3 = -8$ $5^{*}x1 + 3^{*}x2 - 7^{*}x3 = 0$

9

Geometric interpretation of consistent equations

Generalizing: *n* unknowns \rightarrow a space, V_n, of *n* dimensions

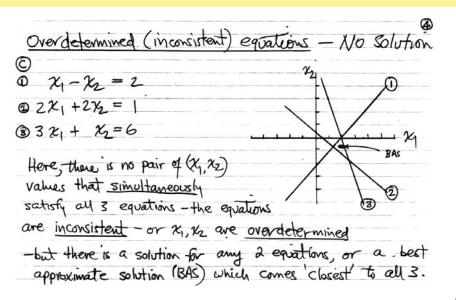
1 equ in n un knowns -> (n-1) D subspace, Vn-1, of Vn 2 equ in a unknowing -> 2- Vn-1 of Vn intersect in Vn-2 (n-1) eqn in n unknowns -> (n-1) Vm1 of Vn intersect in Vn-(m)=V1 = line n eqn in n unknowns -> n Vn-1 of Vn intersect in Vn-n= Vo = point one unique -Solution

Not all systems have unique solutions

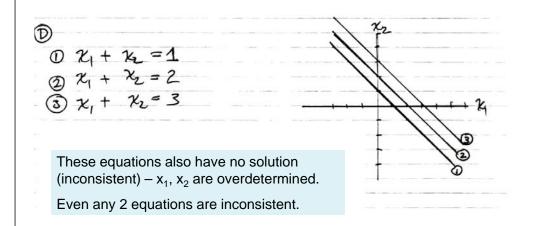
Under determined equations - Infinitely many solutions $\mathcal{B}_{0} x_{1} + x_{2} = 2$ 2 2:X1 + 2x3 = 4 3 3× +3×2=6 Here there are infinitely many pairs, 2, 2, which satisfy all' 3 equations simultaneously - any 1,2,3 pair of the form (x1, 2-x1) - the equations are underdetermined (but consistent)

Note that we **can** find solutions by assigning an arbitrary value to one unknown, or adding one more equation $(x_2 = 0)$. Then, $(x_1, x_2) = (2, 0)$ satisfies all equations.

Some systems have no (exact) solutions



Some systems have even less!



14

Rank & geometry: conditions for solutions

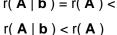
m equations in *n* unknowns:

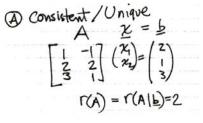
$$\mathbf{A}_{m \times n} \mathbf{X}_{n \times 1} = \mathbf{b}_{m \times 1}$$

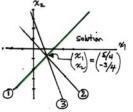
- are consistent iff
 - solution is *unique* if
- $r(\mathbf{A} \mid \mathbf{b}) = r(\mathbf{A}) = n$

 $r(\mathbf{A} \mid \mathbf{b}) = r(\mathbf{A})$

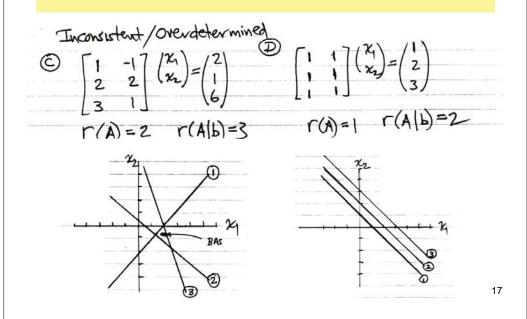
- solution is *underdetermined* if r(A | b) = r(A) < n
- are *inconsistent* if



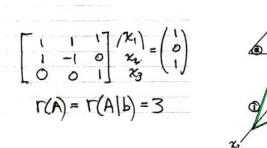


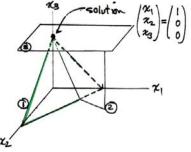


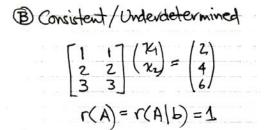
Rank & geometry: conditions for solutions

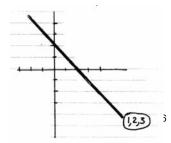


Rank & geometry: conditions for solutions





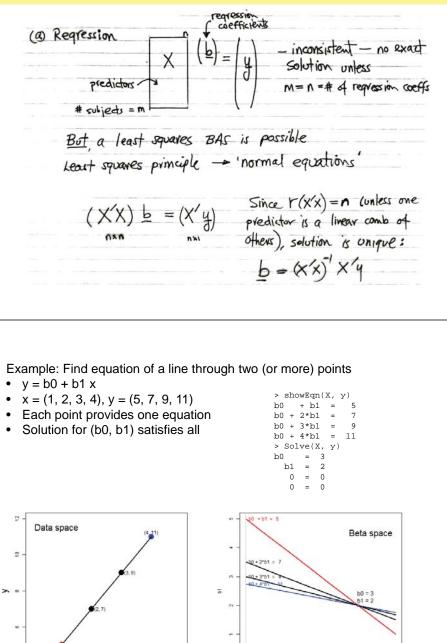




Why $r(\mathbf{A} \mid \mathbf{b}) = r(\mathbf{A})$ works

- Consistent / unique: r(A | b) = r(A) = n
 - All subspaces linearly independent, so they intersect in a unique point (V₀)
- / underdetermined: r(A | b) = r(A) < n
 - Some rows of A are linearly dependent, but the same dependence exists among elements of b
- Inconsistent: r(**A** | **b**) > r(**A**)
 - Linear relations among rows of A *differ* from those of b → there can be no (exact) solutions.

Statistical applications

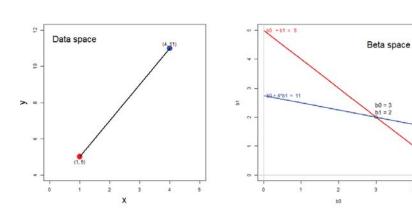


Example: Find equation of a line through two (or more) points

- y = b0 + b1 x
- x = (1, 4), y = (5, 11)
- Each point provides one equation •
- Solution for (b0, b1) satisfies all
- b0 + 4*b1 = 11
 - > Solve(X, y) b0 = 3 b1 = 2

> showEqn(X, y)

b0 + b1 = 5



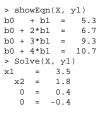
Example: Find equation of a line through two (or more) points

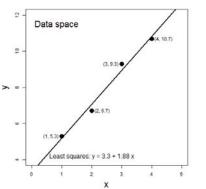
x

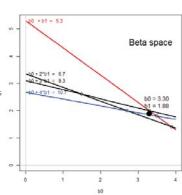
60

Real data never yields consistent equations

- y = b0 + b1 x
- $x = (1, 2, 3, 4), y = (5.3 \ 6.7 \ 9.3 \ 10.7)$
- Each point provides one equation
- Least squares solution for (b0, b1) satisfies "best", in data space

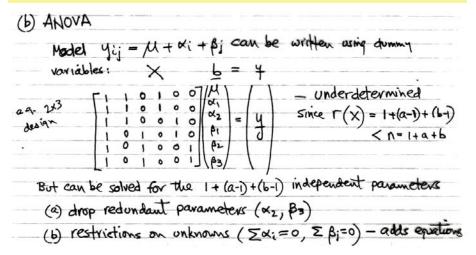






21

Statistical applications

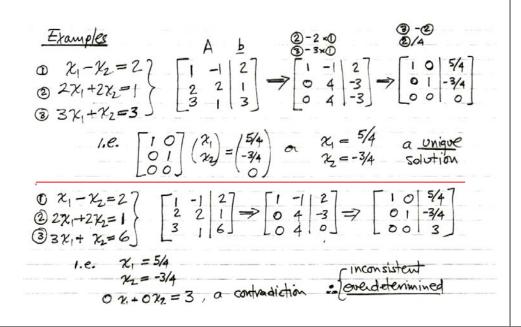


In general, factors and interactions in ANOVA designs have more parameters than can be solved for independently. Standard software (R, SAS, SPSS) handles this automatically, but **interpretation** depends on knowing what it doesta

Gaussian elimination



Gaussian elimination



Gaussian elimination

$$\begin{array}{c} \textcircled{0} \quad \chi_{1} + \chi_{2} = 1 \\ 2\chi_{1} + 2\chi_{2} = 2 \\ 3\chi_{1} + 3\chi_{2} = 3 \end{array} \xrightarrow{\left[\begin{array}{c} 1 & 1 \\ 0 & 0 \\ 6 & 0 \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 1 & 1 \\ \chi_{2} \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \chi_{2} \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 1 & 1 \\ \chi_{2} \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \chi_{2} \end{array} \end{array}}$$

Gaussian elimination

General Mes

- If any zero row of Ar corresponds to a non-zero entry of br, then there is a contradiction \$ system is overdetermined
- If there is no contradiction \$ rank A = n (=# non-zero rows in Ar) then solution is Unique Ar br

e.q. for n=3 m≥3

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow \begin{bmatrix} \chi_1 = b_1 \\ \chi_2 = b_2 \\ \chi_3 = b_3 \end{bmatrix}$$

If m=n (equal # of equations \$ unknowns \$ if $\Gamma(A) = n$ then the unique solution can be expressed as $\chi = A^{-1}b$

27

29

Gaussian elimination

• If no contraction \$ rank A = r < n, then equations are <u>underdetermined</u> — n-r unknowns can be given arbitrary values \$ remaining r unknowns can be solved in terms of these.

$$\begin{array}{c} E \cdot q & A_{r} & b_{r} \\ 0 & 0 & 1 & -3 \\ - & 0 & 0 & 0 & 0 \\ (\rightarrow L_{0} & 0 & 0 & 0 & 0 \\ \end{array} \begin{pmatrix} \chi_{1} \\ \chi_{2} \\ \chi_{3} \\ \chi_{4} \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 0 \\ 0 \end{pmatrix} \leftarrow \text{consistent}$$

rank(Ar) = rank(A) = 2 - underdetermined, can solve for 2 unknowns positions of leading 1s indicate which x's to solve for

1.e
$$(\bar{x}_1) + x_2 + 2x_4 = 4$$

 $(\bar{x}_3) - 3x_4 = -1$
 $x_1 = 4 - x_2^* - 2x_4^*$
 $x_2 = x_2^*$
 $x_3 = -1 + 3x_4^*$ $(x_2^*, x_4^* \text{ are}$
 $x_4 = x_4^*$ arbitrary values

28

Gaussian elimination- matrix algebra

An algebraic argument for the case $\Gamma(A|\underline{b}) = \Gamma(A) < n$ is as follows:

Permute the linearly independent r rows of A \$ 5 to come first and partition the equations :

$$r \left\{ \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \left(\begin{array}{c} \underline{\chi}_{1} \\ \underline{\chi}_{2} \end{array} \right) \right\} r = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} r$$

Since the last m-r rows (equations) are linearly dependent, they can be ignored, so we can solve the first r:

$$\begin{bmatrix} A_{\Pi} & A_{12} \end{bmatrix} \begin{pmatrix} \underline{x}_{1} \\ \underline{x}_{2} \end{pmatrix} = \underline{b}_{1} \implies A_{\Pi} \underline{x}_{1} + A_{12} \underline{x}_{2} = \underline{b}_{1}$$
Solution
$$\int \underline{x}_{1} = A_{\Pi}^{-1} \underline{b}_{1} - A_{\Pi}^{-1} A_{12} \underline{x}_{2}^{*}$$

$$x_{2} = x_{1}^{*} \quad (arbitrary)$$

The matlib package

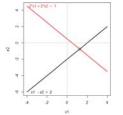
Functions for visualizing linear algebra and systems of equations:

- showEqn(A, b)
- plotEqn(A, b)
- gaussianElimination(A, b)
- echelon(A, b)
- Solve(A, b)

Many others, including:

- R(A) matrix rank
- tr(A) matrix trace

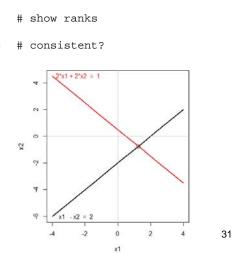
Install: install.packages("matlib")
Use: library(matlib)



Two consistent equations in two unknowns:

> plotEqn(A,b)

> Solve(A, b, fractions=TRUE)
x1 = 5/4
x2 = -3/4

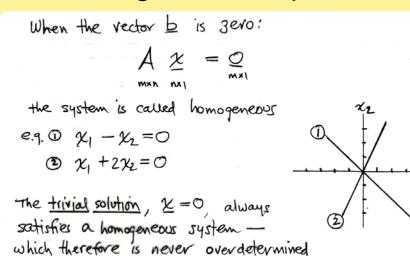


> gaussianElimination(A, b, fractions=TRUE, verbose=TRUE)

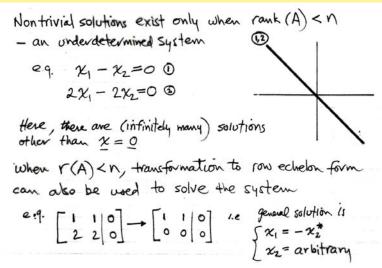
Initial matrix: [,1] [,2] [,3] [1,] 1 -1 2 [2,] 2 2 1 row: 1 exchange rows 1 and 2 [,1] [,2] [,3] [1,] 2 2 1 [2,] 1 -1 2 multiply row 1 by 1/2 [,1] [,2] [,3] [1.] 1 1 1/2 [2,] 1 -1 2 row: 2 multiply row 2 by -1/2 [,1] [,2] [,3] [1,] 1 1/2 [2,] 0 1 -3/4subtract row 2 from row 1 [,1] [,2] [,3] [1,] 1 0 5/4 [2,] 0 1 -3/4

32

Homogeneous equations



Homogeneous equations



We will use this next week to help understand eigenvalues and eigenvectors $_{34}$

x.

Summary

- Linear equations are used in solving for parameters in linear models
- Non-homogeneous equations: A x = b
 - m = n: solution is $\mathbf{x} = \mathbf{A}^{-1} \mathbf{b}$ if \mathbf{A}^{-1} exists
 - Consistent: if r(A | b) = r(A)
 - Inconsistent: if r(A | b) > r(A)
- Geometry:
 - Each *n*-variable eqn: (n-1) dim hyper plane in V_{n-1} subspace
 - Unique solution *iff* intersect in a point (V₀)
 - Underdetermined if intersect in larger space
 - Inconsistent if no points lie on all hyper planes