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Tests of mean differences

Why study more than 1 criterion?
More complete description of the phenomenon under 
investigation

• Job satisfaction: work load, peer relations, autonomy
• Student achievement: math, science, literature, french
• Therapy outcome: self-worth, relationship, health

Treatment may affect subjects in more than one way
• All up/down together?
• Some up, some down?

These effects may be correlated
Same arguments as for multivariate regression.
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Tests of mean differences

Why use a multivariate analysis (T2, MANOVA)?
Separate univariate tests )

   e.g., 10 responses, separate ANOVAs at =.05
            Pr -(.95)10

Multivariate tests: give an overall test at =.05
Univariate tests ignore correlations among the 
responses
Groups may not differ on any single criterion, but may 
differ on several criteria jointly
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much too 
liberal

somewhat 
conservative

Simpler methods 
don’t get things 
quite right
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Tests of mean differences

Why not always use MANOVA tests?
Like overall F-test in ANOVA---

• Many responses, small effects 
test on all responses.

• As usual, hypothesis tests should be focused on research 
questions, rather than “shotgun” approach

Somewhat harder to describe / explain
• Multiple test statistics: Wilks’, HLT, Pillai, Roy
• But: all are equivalent for s=1 tests, so no problem
• just report the equivalent F (all the same for T2 here)
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Hotelling’s T2

Multivariate generalization of univariate t-test
t-test :: ANOVA as T2 :: MANOVA

T2 as maximum univariate t2 for a linear 
combination of responses
Special case of the GLH: L B M = 0
Introduces ideas of discriminant analysis
Introduces ideas of MANOVA

In the history of multivariate statistical methods, there are a few important ideas that 
paved the way from univariate 
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T2: generalized t test

1 sample, univariate
H0 : = 0

H1 : 0

1 sample, multivariate
H0 : = 0 (p x 1)

H1 : 0
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Thus, T2 is like the square of a univariate t statistic

T2: generalized t test
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Q: For the same means, 
would T2 be larger or smaller 
if r < 0?
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x1: anxiety

x2: depression

Does exam period increase anxiety and
depression?
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T2: max possible t2 for linear combination

For data matrix X(n x p), consider linear comb with 
weights a(p x 1) :

w = X a
Then H0 : = 0 (p x 1) 0 : w = a’ 0

Find weights to give max t2:
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Rank (QH)=1 -zero latent root
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T2: max possible t2 for linear combination

Hence, the maximum value of t2(a) is

The corresponding latent vector, a, is

    (raw) discriminant function coefficients. These give the 
relative contribution of each response to T2

In the two-sample case, analogous results using 

1 2
0 0' )( () TN x S x

1
0( )a S x

1 2( )x x

(the 1 non-zero 
latent root)
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T2: critical values

For a single response, t2N-1 ~ F(1,N-1)
Since we chose a to give max t2(a), need to take 
this into account.
Hotelling showed that a transformation of T2 has
an F distribution

In SAS/SPSS/R, we typically use equivalent F 
values based on Roy’s test or HLT

2T   ~   ( , )
( 1)
N p F p N p

p N
F
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T2: invariance

Univariate t unchanged under any linear
transformation

x
T2 is invariant under all affine transformations
x (p x 1) C (p x p) x + d : C  non-singular

The same is true for all MANOVA tests
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T2: confidence regions for means
A 1- confidence region for (p x 1) consists of those for which

1
1

( 1)( ' ) )) ( ( ,p Nx S x F
N p

N p N p
Data ellipse 
centered at 
means

In the figure, note that 
H0: = 0 is rejected, 
but the univariate
tests are not rejected.

Convert F back to T2
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T2: special case of GLM

The multivariate General Linear Model expresses all 
models in the form

n p n q q p n pY X B E
A two-sample T2 
takes the form:

(ˆ '

ˆ

' )1

2

B X X' X

'

Y
The usual LS 
estimates:
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T2: special case of GLH

All hypotheses are of the form

Eg H0: 1 = 2 1 – 2 = 0

0 :H L  B  M 0
Contrasts 
among groups

Contrasts among variables 
(profile analysis)

1 3 3

2

(0 1 1) '
'

'
LBM 0
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Example: methods of teaching algebra

Responses: students evaluated on--
Basic math (BM)
Word problems (WP)

Groups: two instructors, different teaching 
methods (presumably: equal ability, random 
assignment)
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title 'Two-Sample Hotelling T2'; 
data mathscor; 
   input group BM WP; 
   label BM='Basic Math' 
         WP='Word Problems'; 
datalines; 
1 190  90 
1 170  80 
1 180  80 
1 200 120 
1 150  60 
1 180  70 
2 160 120 
2 190 150 
2 150  90 
2 160 130 
2 140 110 
2 145 130 
; 

1 190  90
1 170  80
1 180  80
1 200 120
1 150  60
1 180  70
2 160 120
2 190 150
2 150  90
2 160 130
2 140 110
2 145 130

t p-value
BM 2.06 0.066
WP -3.23 0.009**

Univariate tests
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proc gglm data=mathscor outstat=HEstats; 
   class group; 
   model BM WP = group / nouni; 
   manova H=group; 
run; 

                        MANOVA Test Criteria and Exact F Statistics for 
                   the Hypothesis of No Overall group Effect 
                       H = Type III SSCP Matrix for group 
                             E = Error SSCP Matrix 
 
                              S=1    M=0    N=3.5 
 
Statistic                        Value    F Value    Num DF    Den DF    Pr > F 
 
Wilks' Lambda               0.13481891      28.88         2         9    0.0001 
Pillai's Trace              0.86518109      28.88         2         9    0.0001 
Hotelling-Lawley Trace      6.41735719      28.88         2         9    0.0001 
Roy's Greatest Root         6.41735719      28.88         2         9    0.0001 

T2 = dfe x 1 = (n1 + n2 -2) x HLT = 10 HLT = 64.17

All F values are equal when s = dfh = 1

2 = 1 – = 0.865
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> mod <- lm(cbind(BM, WP) ~ group, data=mathscore)
> Anova(mod)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df    Pr(>F)    

group  1   0.86518   28.878      2      9 0.0001213 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> print(summary(Anova(mod)), SSP=FALSE)

Type II MANOVA Tests:
------------------------------------------

Term: group 
Multivariate Tests: group
                 Df test stat approx F num Df den Df    Pr(>F)    
Pillai            1    0.8652   28.878      2      9 0.0001213 ***
Wilks             1    0.1348   28.878      2      9 0.0001213 ***
Hotelling-Lawley 1    6.4174   28.878      2      9 0.0001213 ***
Roy               1    6.4174   28.878      2      9 0.0001213 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Analysis with R:
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Visualizing T2 & MANOVA

Data ellipses show:
• group means (centroids)
• within-group scatter
• (are they ~ the same?)

covEllipses(mathscore[,2:3], 
  mathscore$group, 
  pooled=FALSE) 

Interpretation: Instructor 1 
focuses more on Basic Math; 
instructor 2 on Word Problems

This bivariate display is much more informative than separate univariate 
displays for BM and WP!
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Visualizing T2 & MANOVA

HE plots show:
• variation of means (H)
• pooled within-group scatter (E)

heplot(mod, fill=TRUE, 
  xlab="Basic math",   
  ylab="Word problems") 
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Visualizing T2 & MANOVA

Overlaying these shows:
• variation of means (H)
• pooled within-group scatter (E)
= average of within-group var-cov 
matrices
• discriminant axis =  H

Discriminant analysis:

• Find linear comb of BM, WP to 
best discriminate between groups

• DA also allows different n s of 
groups and cost of mis-
classification (shifts boundary line)
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Assumptions: homogeneity of (co)variance

For univariate t-test or ANOVA, we assume equal variance within 
groups

s2
1 = s2

2 = …= s2
g

2
pooled or MSE

Box test or Levine’s test often used
Multivariate tests: translates to equality of within-group covariance 
matrices,

S1 = S2 = …= Sg pooled = E matrix
Box M test: H0 : 1 = 2 = …= g

SAS: proc discrim, pool=test option
Why: discriminant function is linear of S1 = S2 = ... but quadratic 
otherwise
R: heplots::boxM()

/2

/2| |
| | iN

i
N
pooled

M
S

S
2 with (g-1)p(p+1)/2 df
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pproc ddiscrim data=mathscor 
     pool=test 
     canonical ncan=11 out=scores; 
   class group; 
   var BM WP; 

               The DISCRIM Procedure 
   Test of Homogeneity of Within Covariance Matrices 
 
       Chi-Square        DF    Pr > ChiSq 
        0.617821         3        0.8923 

Raw Canonical Coefficients 
 
Variable       Can1 
 
BM          -0.0835 
WP           0.0753 

group     BM     WP      Can1 
 
  1      190     90    -2.78495 
  1      170     80    -1.86756 
  1      180     80    -2.70261 
  1      200    120    -1.36188 
  1      150     60    -1.70287 
  1      180     70    -3.45531 
  2      160    120     1.97832 
  2      190    150     1.73129 
  2      150     90     0.55525 
  2      160    130     2.73102 
  2      140    110     2.89571 
  2      145    130     3.98360 

(I’m using this as a short cut to also 
introduce canonical analysis)
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T2 = t2 based on Can1

proc tttest data=scores; 
   class group; 
   var can1; 
run; 

                                                           T-Tests 
 
Variable   Method         Variances     DF   t Value    Pr > |t| 
 
Can1       Pooled         Equal         10     -8.01      <.0001 
Can1       Satterthwaite  Unequal      8.8     -8.01      <.0001 

T2 = (-8.01)2 = 64.17

A simple t test using canonical scores 
is equivalent to Hotelling’s T2
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Canonical analysis in R with the candisc package

library(candisc)
mod.can <- candisc(mod)
summary(mod.can)

Canonical Discriminant Analysis for group:

CanRsq Eigenvalue Difference Percent Cumulative
1 0.8652      6.417                100        100

Class means:
[1] -2.313  2.313

std coefficients:
BM     WP 

-1.463  1.546 

plot(mod.can)

boxM(mod)
        Box's M-test for Homogeneity of Covariance Matrices

Chi-Sq (approx.) = 0.618, df = 3, p-value = 0.89
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Example: Delay in oral practice

Postovsky (1970): Two groups were studied in 
second language learning (n=28 each)

Control: 0 delay before starting oral practice
Expt’l: 4 week delay before starting oral practice
NB: groups were matched on age, education, former 
language training & language aptitude [Why?]

Responses (exam after 6 weeks):
listen
speak
read
write
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data oral; 
    input subjno grp listen speak read write; 
    length Group $ 88; 
    if grp=11 then Group='Exptl'; 
    if grp=22 then Group='Control'; 
datalines; 
 1 1 34 66 39 97 
 2 1 35 60 39 95 
 3 1 32 57 39 94 
 4 1 29 53 39 97 
 5 1 37 58 40 96 
 6 1 35 57 34 90 
 7 1 34 51 37 84 
 8 1 25 42 37 80 
  ... 

1 1 34 66 39 97
2 1 35 60 39 95
3 1 32 57 39 94
4 1 29 53 39 97
5 1 37 58 40 96
6 1 35 57 34 90
7 1 34 51 37 84
8 1 25 42 37 80

Complete output on class web: SAS examples/glm/oral.sas
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pproc gglm data=oral outstat=HEstats; 
     class group; 
     model listen--write = group; 
     manova h = group / short; 
run; 

                  MANOVA Test Criteria and Exact F Statistics for 
             the Hypothesis of No Overall Group Effect 
                 H = Type III SSCP Matrix for Group 
                       E = Error SSCP Matrix 
 
                           S=1    M=1    N=24.5 
 
Statistic                Value    F Value    Num DF    Den DF    Pr > F 
 
Wilks' Lambda         0.914414       1.19         4        51    0.3250 
Pillai's Trace        0.085586       1.19         4        51    0.3250 
Hotelling-Lawley      0.093596       1.19         4        51    0.3250 
Roy's Greatest Root   0.093596       1.19         4        51    0.3250 

2 = 1 – = 0.086 NB: s = min(p, dfh), where dfh=g-1

oral.mod <- lm(cbind(listen, speak, read, write) ~ Group, data=oral)
Anova(mod) 31

Visualizing the analysis

HE plot shows that:

• Exptl > Control on both 
measures

• Diffce too small, relative 
to error variation, to be 
considered significant

• Residuals are also 
positively correlated

• The H “ellipse” becomes 
a line when s=1

heplot(oral.mod, fill=TRUE)
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HE plot matrix confirms 
that this is true for all 
pairs of responses

pairs(oral.mod, fill=TRUE, ...) 
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Profile analysis (repeated measures)

When the responses are commensurate (on the same 
scale) it is often useful to test equal means across
responses
Univariate analysis (repeated measures) and 
multivariate analysis (profile analysis) frame similar 
questions, in different ways

Parallel profiles: No Group x Measure interaction
Equal levels: No Group main effect
Flatness: No Measure main effect

Univariate analysis relies on additional assumptions 
(compound symmetry), not always met in data
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Example: one-sample profile analysis

Study of immediate memory in a sentence probe task
Ex: The tall man met the young girl who got the new hat

       Pos:    1    2                     3     4      5
Function:  Adj1 Subj            Adj2   Obj Rel.PN

IV: sentence position
DV: response speed (~ 1/RT)

Goals:
Test equal means across sentence position
Test contrasts among means based on sentence structure

• Subject phrase vs. predicate phrase           1    1    -1    -1    0
• Adj vs. Noun                                                1   -1     1    -1    0
• Interaction: (subj-predicate) x (adj-noun)     1   -1    -1     1    0
• main vs. relative clause                               1    1      1     1   -4
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ddata probe1; 
   input subjno P1-P5; 
datalines; 
 1 51 36 50 35 42 
 2 27 20 26 17 27 
 3 37 22 41 37 30 
 4 42 36 32 34 27 
 5 27 18 33 14 29 
 6 43 32 43 35 40 
 7 41 22 36 25 38 
 8 38 21 31 20 16 
 9 36 23 27 25 28 
10 26 31 31 32 36 
11 29 20 25 26 25 
; 

1 51 36 50 35 42
2 27 20 26 17 27
3 37 22 41 37 30
4 42 36 32 34 27
5 27 18 33 14 29
6 43 32 43 35 40
7 41 22 36 25 38
8 38 21 31 20 16
9 36 23 27 25 28
10 26 31 31 32 36
11 29 20 25 26 25

The probe1 dataset is read here in ‘wide’ 
format, suitable for
• Multivariate analysis
• Repeated measures analysis
For plotting, traditional univariate and 
mixed-model analysis, it must be in ‘long’ 
format

proc transpose data=probe1 
          out=long;
   by subjno;
   var p1-p5;

subjno   Position  Speed

     1         P1         51
     1         P2         36
     1         P3         50
     1         P4         35
     1         P5         42
     2         P1         27
     2         P2         20
     2         P3         26
     2         P4         17
     2         P5         27
     …
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%bboxplot(data=long, 
     var=Speed,  
     class=Position, 
     connect=11); 

For plotting, use the data in 
the long format

Note:
• measured response: RT
• speed ~ 1 / RT
• is there still a skewness 
problem?
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Profile analysis: GLH

H0: equal means over positions (flatness):
1 = 2 = … = 5

GLH, using L=1 and 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

M

1 5

5
0

5

5

2

3

4

0
0

:
0
0

H

These are “simple contrasts” against a baseline level

For overall test, any M with rank=4 and cols that sum = 0 gives same result

Equivalent to analysis of Y M
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proc glm data=probe1;
   model P1-P5 = / nouni;
   manova H= intercept ;             /* No position effect*/

           MANOVA Test Criteria and Exact F Statistics 
              for the Hypothesis of no POSITION Effect 
               H = Type III SSCP Matrix for POSITION 
                       E = Error SSCP Matrix 
 
                        S=1    M=1    N=2.5 
 
Statistic                Value    F Value    Num DF    Den DF    Pr > F 
 
Wilks' Lambda         0.248225       5.30         4         7    0.0277 
Pillai's Trace        0.751775       5.30         4         7    0.0277 
Hotelling-Lawley      3.028595       5.30         4         7    0.0277 
Roy's Greatest Root   3.028595       5.30         4         7    0.0277 

Complete output on class web: SAS examples/glm/probe1.sas

probe1.mod <- lm(cbind(p1, p2, p3, p4, p5) ~ 1, data=probe1)
idata <- data.frame(position=factor(1:5))
Anova(probe1.mod, idata=idata, idesign = ~ position)

In R:
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The same hypothesis can be tested using the repeated statement:

proc glm data=probe1;
     model P1-P5 = / nouni;
     repeated Position 5 contrast(5);

In addition to the multivariate test, we get the traditional univariate tests. 
However, these rely on additional assumptions (more later).

                                    Repeated Measures Analysis of Variance
                        Univariate Tests of Hypotheses for Within Subject Effects

                                                                                                          Adj Pr > F
Source                    DF           SS    Mean Sq   F Value   Pr > F      G – G     H - F

POSITION                   4    867.527    216.881      9.25   <.0001     0.0001 <.0001
Error(POSITION)       40    938.072     23.452

Greenhouse-Geisser Epsilon    0.7851
Huynh-Feldt Epsilon                  1.1860
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Profile analysis: GLH contrasts

Here, we also want to test specific 
contrasts among the sentence positions

In proc glm, any custom M can be defined 
in the manova statement

1

2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 4 Re

Adj
Subj
Adj
Obj

l

M
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pproc gglm data=probe1; 
   model P1-P5 = / nouni; 
   manova H= intercept              /* No position effect    */ 
          M= P1 + P2 - P3 - P4,     /* Subject vs. Predicate */ 
             P1 - P2 + P3 - P4,     /* Adjs vs Nouns         */ 
             P1 - P2 - P3 + P4,     /* SubPred x AdjNoun     */ 
             P1 + P2 + P3 + P4 - 44*P5 /* Relative clause     */ 
          mnames = SubjPred AdjNoun SPxAN RelPN 
          / summary printH printE SHORT ; 

                         M Matrix Describing Transformed Variables 
 
               P1        P2        P3        P4        P5 
 
 SUBPRED        1         1        -1        -1         0 
 ADJNOUN        1        -1         1        -1         0 
 SPxAN          1        -1        -1         1         0 
 RELPN          1         1         1         1        -4 
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H & E matrices

                              E = Error SSCP Matrix 
 
          SUBPRED    ADJNOUN     SPxAN     RELPN 
 
SUBPRED    694.18      54.91     23.82    562.72 
ADJNOUN     54.91    1370.55    -48.91     53.64 
SPxAN       23.82     -48.91    482.18    863.27 
RELPN      562.72      53.64    863.27   6026.91 

 694.18 
1370.55 

482.18  
6026.91

                H = Type III SSCP Matrix for Intercept 
 
         SubjPred    AdjNoun     SPxAN     RelPN 
 
SubjPred     0.82      52.09     11.18      0.27 
AdjNoun     52.09    3316.45    711.91     17.36 
SPxAN       11.18     711.91    152.82      3.73 
RelPN        0.27      17.36      3.73      0.09 

  0.82  
3316.45 

 152.82 
  0.09Diag elements 

are univariate 
SS for each 
contrast

H is labeled 
‘Intercept’ since 
H0 is mean=0
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                                       Multivariate Analysis of Variance 
Dependent Variable: SUBPRED 
 
 Source                DF  Type III SS    Mean Square   F Value   Pr > F 
 Intercept              1      0.81818      0.8181818      0.01   0.9157 
 Error                 10    694.18182     69.4181818 
 
Dependent Variable: ADJNOUN 
 
 Source                DF  Type III SS    Mean Square   F Value   Pr > F 
 Intercept              1    3316.4545    3316.454545     24.20   0.0006 
 Error                 10    1370.5456     137.054545 
 
Dependent Variable: SPxAN 
 
 Source                DF  Type III SS    Mean Square   F Value   Pr > F 
 
 Intercept              1    152.81818    152.8181818      3.17   0.1054 
 Error                 10    482.18182     48.2181818 
 
Dependent Variable: RELPN 
 
 Source                DF  Type III SS    Mean Square   F Value   Pr > F 
 
 Intercept              1       0.0909       0.090909      0.00   0.9904 
 Error                 10    6026.9091     602.690909 

 F Value   Pr > F
   24.20   0.0006

So, these are based on the diag elements of H and E
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Two-sample profile analysis

Same probe task, but with two groups:
Gp 1: low STM capacity
Gp 2: high STM capacity

Questions:
Are profiles parallel? (Group x Position)
Equal levels? (Group main effect)
Flat profiles? (Position main effect)
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Two-sample profile analysis: GLH

Parallelism:

L = (1  -1)

11 12 21 22

12 13 22 23
01

13 14 23 24

14 15 24 25

:H

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

M
contrast for 
groups

profile contrasts for 
positions

Interaction of Group x Position:

are successive differences the 
same for Gp 1 & 2?
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Two-sample profile analysis: GLH

Equal levels (Group effect)
H0: 1 = 2 1’ 1 – 1’ 2 = 0 (in univariate tests)
GLH:

L = (1  -1)         M = I(5x5)

Flatness (Position effect)
H0: ( 11+ 21)= … = ( 15+ 25)
GLH:

L = (1  1)

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

M
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proc glm data=probe2;
     class group;
     model p1-p5 = group / nouni;
     repeated position 5 profile / short;
     manova h = group / printe printh short;
     title2 'Two Sample Profile Analysis'; run;

Statistic            Value   F Value  Num DF   Den DF   Pr > F 
 
Wilks' Lambda       0.21986    13.31       4       15   <.0001 
Pillai's Trace      0.78013    13.31       4       15   <.0001 
Hotelling-Lawley    3.54825    13.31       4       15   <.0001 
Roy's Greatest Root 3.54825    13.31       4       15   <.0001 

Statistic            Value   F Value  Num DF   Den DF   Pr > F 
 
Wilks' Lambda       0.83906     0.72       4       15   0.5919 
Pillai's Trace      0.16094     0.72       4       15   0.5919 
Hotelling-Lawley    0.19181     0.72       4       15   0.5919 
Roy's Greatest Root 0.19181     0.72       4       15   0.5919 

Position effect:

Position x Group effect:

repeated measures tests (univariate)

multivariate tests
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                           Repeated Measures Analysis of Variance 
         Tests of Hypotheses for Between Subjects Effects 
 
 Source     DF     SS     Mean Square   F Value   Pr > F 
 
 group       1   1772.41    1772.4100      8.90   0.0080 
 Error      18   3583.14     199.0633 

Statistic             Value  F Value  Num DF  Den DF   Pr > F 
 
Wilks' Lambda       0.55608     2.24       5      14    0.1083 
Pillai's Trace      0.44392     2.24       5      14    0.1083 
Hotelling-Lawley    0.79832     2.24       5      14    0.1083 
Roy's Greatest Root 0.79832     2.24       5      14    0.1083 

Group effect: H0: 1 = 2

Compare with univariate, repeated measures approach: 1’ 1 – 1’ 2=0

The univariate test looks at only one contrast among the many tested by 
the multivariate test.
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                       Repeated Measures Analysis of Variance
           Univariate Tests of Hypotheses for Within Subject Effects                
 
                                                        Adj Pr > F 
Source          DF      SS      MS   F Value  Pr > F   G - G   H - F 
 
position         4   3371.30  842.825  14.48  <.0001  <.0001  <.0001 
position*group   4     79.94   19.985   0.34  0.8479  0.8068  0.8479 
Error(position) 72   4191.96   58.222 
 
              Greenhouse-Geisser Epsilon    0.8009 
              Huynh-Feldt Epsilon           1.0487 

Univariate, repeated measures tests rely on further assumption:
• Compound symmetry (= correlations among repeated measures)
• Univariate adjustments (G-G, H-F) adjust the p-values to take violations
   into account

Complete output on class web: SAS examples/glm/probe2.sas
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proc transpose data=probe2 
                           out=long;
    var p1-p5;
    by group subjno;
    run;
data long;
    set long;
    rename col1=Speed 
               _name_=Pos;
    label _name_='Position';
    run;

%meanplot(data=long,
      var=Speed, 
      class=Pos Group);

Plotting means: %meanplot

Reshape data to long format:
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HE plots

1

2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 4 Re

Adj
Subj
Adj
Obj

l

M

Using substantive contrasts for 
the sentence positions:

HE plot shows the position 
effect is mainly in the Adj 
vs Noun contrast
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Summary

Hotelling’s T2 introduces general ideas:
T2: multivariate analog of t2

Special case of GLH for 1- & 2-sample design
T2 ~ 1

Multiple groups: t-test :: ANOVA as T2 :: MANOVA
Specific tests: contrasts among groups (L) and 
among responses (M) – better than all pairwise!
Visualizing hypothesis and error variation via HE plots

• 1 df tests: H “ellipse” is a line
• Orientation: Shows variation of means wrt responses




