

Graphical Methods for Data Analysis & Multivariate Statistics

Michael Friendly Psychology 6140

Why plot your data?

Graphs help us to see

patterns, trends, anomalies and other features

not otherwise easily apparent from numerical summaries.

Source: http://xkcd.com/523/

How graphs can change your life (n=1)

15 yr. blood sugar, pre-diagnosis

daily average, after diagnosis

average hourly variation

Personal analytics

residuals: - daily average and hourly

A statistician contracts diabetes, and uses graphs to monitor his blood sugar.

- \rightarrow Visual feedback on diet & exercise reinforce behavioral change
- \rightarrow Residual plots show unexplained events, possibly important

Ref: Wainer & Velleman. Looking at blood sugar, Chance, 2008, 21(4), 56-61

Different graphs for different purposes

Graphs (& tables) as communication:

- What audience?
- What message?

•Analysis graphs: design to see patterns, trends, aid the process of data description, interpretation

 Presentation graphs: design to attract attention, make a point, illustrate a conclusion

2

3

Different graphs for different purposes

Presentation

Exploration

Presentation graphs: single image for a large audience **Exploratory graphs**: many images for a narrow audience (you!)

Comparing groups: Analysis vs. Presentation graphs

Six different graphs for comparing groups in a one-way design

- which group means differ?
- equal variability?
- distribution shape?
- what do error bars mean?
- unusual observations?

Never use dynamite plots Always explain what error bars mean Consider tradeoff between summarization & exposure

Presentation graph: Nightingale's coxcomb

Florence Nightingale: Deaths in the Crimean war from battle vs. other causes (disease, wounds)

She used this to argue for better field hospitals (MASH units)

The best presentation graphs pass the Interocular Traumatic Test: The message hits you between the eyes!

Presentation: Turning tables into graphs

Variable	Coefficient (Standard Erro
Constant	.41 (.93)
Countries	
Argentica	1.31 (.33)*** B.M
Chile	.93 (-32)### B.M
Colombia	1.45 (.32) *** b.M
Mexico	.07 (.32) ^{A,CH,CO,V}
Venezuela	.96 (.37)## B.M
Threat	
Retrospective egocentric economic perceptions	.20 (.13)
Prospective egocentric economic perceptions	-22 (.12) [#]
Retrospective sociotropic economic perceptions	21 (.12)*
Prospective sociotropic economic perceptions	32 (.12)**
Ideological Distance from president	
Ideology	
Ideology	.23 (.07) ***
Individual Differences	
Age	.00 (.01)
Female	03 (.21)
Education	.13 (.14)
Academic Sector	.15 (.29)
Business Sector	.31 (.25)
Government Sector	10 (.27)
R ²	.15
Adjusted R ²	-12
n	500
"""p < .01, ""p < .05, "p < .10 (two-tailed)	
* Coefficient is significantly different from Arge	ntina's at p < .05;
* Coefficient is significantly different from Brazi	i's at p < .05;
CH Coefficient is significantly different from Chi	le's at p < .05;
CO Coefficient is significantly different from Col	lombia's at p < .05;
M Coefficient is significantly different from Nexi	co's at p < .05;
Coefficient is significantly different from Unon	elustais at n.e

Graphs of model coefficients are often clearer than tables

Source: tables2graphs.com

Rhetorical graph: Common Sense Revolution

Effective data display

Make the data stand out

- Fill the data region (axes, ranges)
- Use visually distinct symbols (shape, color) for different groups
- Avoid chart junk, heavy grid lines that detract from the data

Facilitate comparison

- Emphasize the important comparisons visually
- Side-by-side easier than in separate panels
- "data" vs. a "standard" easier against a horizontal line
- Show uncertainty where possible

Comparisons— Make visual comparisons easy

- Visual grouping- connect with lines, make key comparisons contiguous
- Baselines— compare data to model against a line, preferably horizontal
- Frequencies often better plotted on a square-root scale

Make comparisons direct

- Points not bars
- Connect similar by lines
- Same panel rather than different panels

Published in: Ian Gordon; Sue Finch; Journal of Computational and Graphical Statistics 2015, 24, 1210-1229. DOI: 10.1080/10618600.0214.989324 Convicint @ 2015 American Statistical Association. Institute of Mathematical Statistics and Interface Enumeration of North America

Showing uncertainty

- Standard plots of observed vs. predicted lack a basis for assessment of uncertainty
- Confidence envelopes indicate extent of deviation
- Identify "noteworthy" observations to track them down

Example: Normal QQ plots used to assess normality of data

Analysis graph: Screening

Side-by-side boxplots of variables in the baseball data show the shapes of distributions --- aid to transformation

 Plot is produced by datachk macro.

See: http://datavis.ca/sasmac/datachk

html

Exploratory graphs: Transformations

shows a variable transformed to various powers.

SAS: symbox macro R: car package: symbox()

Diagnostic graphs: Transformations

Diagnostic plots can be used to suggest corrective action, often by a power transformation: $y \rightarrow y^p$

Symmetry transformation plot:

• Constructed so symmetric data plots as horizontal line

• Slope (b) of data line \rightarrow power: p $= 1 - b \rightarrow y^p = y^{(1-b)}$

Other diagnostic plots use the same idea: slope (b) $\rightarrow y^{(1-b)}$

Model diagnosis: regression quartet

Model diagnosis: Influence in regression

Multiple regression model: prestige ~ income + education

Scatterplots: A basic workhorse for quantitative data

- Show the relation between two Q variables (ignoring all others!)
- More useful when enhanced to show visual summaries
- Vary point color/shape to show strata/groups
- Combine in multi-panel displays to show more
 - Scatter plot matrix: all pairs
 - Conditional relations: Y vs. X stratified by Group

Scatterplots: Scales matter

Computer plots are usually generated with a given *aspect ratio*, to conform to the page or screen.

Influence plots can show:

leverage (potential impact)

leverage (Cook D statistic)

contour map of influence

influence ~ residual x

model residual

A better idea is to scale the plot so that slopes of lines or curves average ~ 45 degrees.

In the rescaled version, we can see that, within each cycle, sunspots tend to increase more quickly than they decline.

Scatterplots: Annotations enhance perception

Scatterplots: Annotations enhance perception

Drawing a smooth curve shows a systematic decrease toward the end of the year.

• The smooth curve is fit by **loess**, a form of non-parametric regression.

Visual explanation:

Scatterplots: Data ellipses

Galton's (1886) semi-graphic table, showing relation of mid-parent's height to children's height.

As shown:

- Contours of equal frequency formed ellipses
- Regression lines of Y on X and X on Y are the loci of vertical and horizontal tangents
- Major/minor axes are the principal components

Scatterplots: Data ellipses

Galton's data on child & mid-parent heights, shown as a sunflower plot: each sunflower symbol shows the number of observations in the (x, y) cell.

Scatterplots: Data ellipses

Any scatterplot can be summarized by data ellipses (assuming normality). These show: means, standard deviations, and allow correlations & regression lines to be visually estimated.

Visualizing multivariate data

Showing relations among 3 or more variables:

- Scatter plot matrices (enhance with visual summaries, thin for many variables)
- Conditional plots: Y ~ X | (Z, Group)
- Seeing multivariate profiles, clusters:
 - Star plots, face plots, parallel coordinates
- Biplots: project data into low-D view

Scatterplot matrix

• Fitness data:

Oxy ~ Age + Weight + Runtime + Rstpulse

- Each panel shows row var vs. col var
- Reg line shows linear relation

Questions:

- What is the best predictor of Oxy?
- Which two predictors are most highly correlated?

Scatterplot matrix

Occ. prestige:

Prestige ~ %women + Educ + Income

- Box, rug plots show univar. distributions
- Quadratic regressions show linear/non-linear relations (loess would be better)

Questions:

- How should Educ be modeled?
- How should Income be modeled?

Larger data sets: Visual thinning

Baseball data: log(Salary) ~ performance variables

- Too much data to show individual points
- Each scatterplot is summarized by a loess smoothed curve and a data ellipse

Questions:

- Which variables are most strongly related to logSal?
- Which relations are strongly nonlinear?
- Which predictors are too highly correlated?

Larger data sets: Corrgrams

Correlation diagram shows **pattern** of correlations for many variables.

Variables are re-ordered to make the groupings most visually apparent.

This graphic assumes that all relations are linear, not necessarily always true

Graph using SAS corrgram macro, http://datavis.ca/sasmac/corrgram.html R: corrgram package

Corrgrams: Different renderings

The value of a correlation may be rendered in different ways, with different visual impact.

- Shading levels: help detect similar values
- Pie symbols: make it easier to compare for larger/smaller

Graph using R **corrgram** package

Baseball data PC2/PC1 order

Conditional plots: Y ~ X | Z

Often want to explore how the relation between Y and X depends on/ varies with some other variable(s) Z.

- Moderator variables
- Interactions

Emission of NOx from ethanol in relation to engine compression ratio and richness of air/ethanol mixture (EE)

Graph using R lattice package

Conditional plots: Y ~ X | Z

The same data is shown in a different format, with

- loess smooth curves
- curves banked to ~ 45°

The joint dependence on CR and EE is now much clearer

(These are examples of **lattice plots**, produced using R software.)

3D plots

Often not useful, unless done with great care.

This plot shows the loess **smoothed** predicted values of NOx in relation to EE and CR. (But, raw data not shown.)

Color is used to show the predicted NOx, using a "heatmap" color scale.

The interpretation is simple!

3D plots

3D plots can be enormously useful with dynamic, interactive software & perspective

This plot shows a relation of occupational prestige to income & education.

- points are shown in perspective, connected to the fitted surface
- the fitted surface (linear, quadratic, smoothed) can be changed interactively
- the plot can be rotated dynamically to see other views

Seeing multivariate clusters: face plot

A faces plot assigns variables to facial features, to show **configural patterns** of many variables.

Pros: Easy to see similar patterns in large data sets.

Cons:

- Hard to connect features to variables for interpretation
- No good rules/ideas for assigning variables to features.

Graph using SAS faces macro, http://datavis.ca/sasmac/faces.html

Seeing multivariate clusters: face plot

	Variable assignment		
Parameter	Left Side Variable	Right Side Variable	74
Eye size	mpg	mpg	(
Pupil size	mpg	mpg	Averane
Pupil position	turn	turn	6
Eye slant	turn	turn	And a
Eye X position	hroom	hroom	
Eye Y position	hroom	hroom	Chov
Eyebrow curvature	rseat	rseat	7
Density of eyebrow	rseat	rseat	Contra la
Eyebrow X position	displa	displa	
Eyebrow Y position	length	length	Olds
Upper hair line	rep77	rep78	1
Lower hair line	weight	weight	
Face line	weight	weight	4 0/0
Hair darkness	rep77	rep78	BMW
Hair shading slant	gratio	gratio	11
Nose line	length	length	
Mouth size	price	price	
Mouth curvature	price	price	Japanese
			Means by Origin, Make

Means, by make & origin

ale

e la

°//°

0/10

Japan 38

15

6

0

ajje

Biplots: variables and obs. in low-D View

- Based on PCA: data is shown in 2D (3D) view that accounts for greatest variance
- Observations: plotted as points
- Variables: vectors from origin (=mean)
- Angles between vectors ~ correlations
- Projection of point on vector ~ score

Biplot: US crime rates

Dim1: ~ Overall crime rate Dim2: Property vs. personal Note: clusters of southern, New England, western states This 2D biplot only shows 76.5% of total variance.

Still, it gives a useful summary of 9 variables and 50 observations.

Biplot: Baseball data

Baseball hitters' data:

- Dim2: fielding, -years
- Dim1: batting performance

Players identified by position, with data ellipses for each

- IF: more assists, errors
- DH: older

This 2D biplot only shows 63.7% of total variance.

HE plots for MANOVA, MMReg

HE plots provide a way to visualize hypothesis tests in MANOVA and multivariate multiple regression, using data ellipses for fitted (H) and residual (E) co-variances.

Graphic ideas: (a) Data ellipses summarize H & E (co)variation; (b) Scale H ellipse so it projects outside E ellipse *iff* effect is significant (Roy test)

HE plot matrices

HE plots in a scatterplot matrix show effects for all pairs of responses.

For the iris data, the Species means are highly correlated on all variables except Sepal length.

HE plots: MMRA

Rohwer data: Cognitive ability and PA tests: n=37, Low SES group

(SAT, PPVT, Raven) ~ n + s + ns + na + ss

• Only one predictor, NA, is (barely) significant

• Yet, overall multivariate test: H₀: **B** = **0** is highly so!

HE plots: MMRA & MANCOVA

Rohwer data: Low SES & Hi SES groups

(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss

Dynamic, interactive graphics

- Interactive graphics & data analysis provides:
- Identifying points
- Model & display controls

47

Dynamic, interactive graphics

48

Dynamic, interactive graphics

Dynamic graphics provide multiple, linked views of a data set

Selecting points, regions in one plot ("brushing") selects the same observations in all other plots

Image source: Data Desk (Paul Velleman)

See: http://www.activstats.com/products/mediadx/custom/lessonbook/nyheart.shtml

shiny: dynamic app showing downloads of R packages https://gallery.shinyapps.io/087-crandash/

cran.rstudio.com			
n when rate exceeds	9.6 840 Total downloads	542 Unique users	10
shboard		-	
w data	Popularity by package (last 5 min)	Top packages	(last 5 min)
		Package name	% of downloads
	Materialadais	magrittr	2.0
	hundles wahle Ime4	stringi	2.0
	knitr kernlab	ggplot2	1.9
	rjava jog	Rcpp	1.9
	mime dichromat scales foreach hwriter	digest	1.0
	plyr	colorspace	1.7
	Rcop geplot2	jsonlite	1.7
	rstudioapi munsell g#2r	stringr	1.7
	httr day	DBI	1.5
	yami reshape2 digest magrittr stringi pc	munsell	1.5
	data.table DBI BH flexmix	plyr	1.5
	curl colorspace sonline stores the	scales	1.5
	DEODERIK Parameter Strange EDOLA	dichromat	1.4
	devtools gtable lazyeval	labeling	1.4
	no assertthat dplyr whisker doParallei ntmitooir user robustbase	RColorBrewer	1.4

Text mining: Latent distance analysis of a corpus of research papers https://gallery.shinyapps.io/LDAelife/

Uses MDS to find a 2D space from distances among terms

Multivariate frequency data: mosaic plots

Two-way table: [Hair][Eye] Eye Brown HazelreenBlue Pearson residuals: Black **Hair** Brown Red ond

A contingency table can be visualized by tiles whose area ~ cell frequency.

Shading: ~ Pearson residual,

$$d_{ij} = (O_{ij} - E_{ij}) / \sqrt{E_{ij}}$$

2.00 Color:

7.05

4.00

0.00 --2.00

-4.00

-5.85

• blue: $O_{ii} > E_{ii}$; red: $O_{ii} > E_{ii}$

Interp: + association (dark hair, dark eyes), (light hair, light eyes)

N-way tables

3+ way tables: split each tile ~ conditional proportions of the next variable.

Now, there are several different models that can be fit.

- Mutual independence: [H][E][S] \rightarrow all vars unassociated
- Residuals: show associations not acct'd for by the model

N-way tables

All models fit to the same table have **same**-sized tiles (O_{iik}), but different residuals.

This model of conditional independence, [HS][ES] \rightarrow H, E independent given Sex.

N-way tables

The model of joint independence, [HE][S] allows Hair, Eye color association, but \rightarrow [HE] assoc. is independent of Sex.

This model obviously fits much better, except for blue-eyed blonds, where females are more prevalent than the model allows.

Summary

- Goal of statistical analysis: summarization
- Goals of graphical analysis: exposure!
 - Often more useful when enhanced with visual summaries (fitted curve, data ellipse)
- Different graphs for different purposes:
 - Reconnaisance (overview)
 - Exploration (detecting patterns, trends)
 - Model diagnosis (assumptions, outliers)

Summary

- Multivariate data requires novel graphs to display increasing # of variables
 - Enhanced scatterplot matrices
 - Visual thinning: less is often more
 - Low-D views (biplots / MDS)
 - HE plots to visualize multivariate tests
 - Mosaic plots to visualize *n*-way frequency tables.

55