
Eigenstuff: Almost everything you ever wanted to know about

Eigenvalues & eigenvectors
…but were too afraid to ask

Michael Friendly
Psychology 6140
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Eigenstuff: Statistical motivations

• Usually used in analysis of a covariance (S) or 
correlation matrix (R)

PCA: principal components are just eigenvectors of S or R; 
eigenvalues give the % of variance accounted for
FA: similar, but based on a “reduced” S or R, accounting for only 
common variance
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Eigenstuff: Statistical motivations

• Same ideas are used in low-D approximations to 
visualize high-D data, models in 2 (or 3) dimensions

• Fundamental for generalizing univariate (F) tests to 
multivariate tests (e.g., Wilk’s , Hotelling trace, …) in 
MReg & MANOVA

Eigenvalues of H E-1
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Eigenstuff: Everyday applications

How does 
Google find 

me?

At the dawn of the 
www, there were many 
search engines

Google became 
dominant because 
they recognized that 
page search had an 
eigenvalue solution.

Someone called the 
result the $25 billion 
eigenvector
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Eigenstuff: Everyday applications

• Google Page Rank algorithm (run often)
Importance of a page (ri): a function of

• # of other pages (Lj) linking to it
• the importance of each linking page

Network diagram of page links Hyperlink matrix (1/ Lj)

But: the WWW has > 30 billion pages! – Do this bit by bit, many robots, many servers

paths thru 
network

6

Eigenstuff: Everyday applications

• Start with r(0) = 1. Condition for a stable solution:
                                  H r = r
• r = eigenvector of H assoc. with =1 (largest).
• Solution: power method: r (k+1) = H r (k)

Network diagram shaded by importance

Lighter = more important

r =

See: http://www.ams.org/featurecolumn/archive/pagerank.html
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Emerging applications: Eigenfaces

Digitize, align & normalize a large # of pics

• Each m x n pic mn vector of pixel values

• Calculate covariance matrix, S, of images

• Eigenvectors of S are “eigenfaces”

Any new face can be 
approximated by a linear 
combination of eigen 
faces

This is one reason why you can’t smile in passport photos!

Computer vision & automatic face recognition
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Eigenstuff: Definitions

• For a square matrix, A(n x n), a vector v is an 
eigenvector of A, if there exists a scalar, , for 
which

• The value is the corresponding eigenvalue
• Other terms: latent vectors (v), latent roots ( ), 

characteristic vectors/roots.
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Eigenstuff: Geometric motivation

Linear transformation of Mona Lisa Eigenvectors arise from what happens 
to a vector v under transformation by a 
matrix A
Here, Mona is subjected to a horizontal 
shear transform, given by

1
0 1

k
A

The red vector (0,1) is unchanged in 
direction– an eigenvector of A

The blue vector (1,1) is changed in 
direction– not an eigenvector

A v = v

A v v

Mona x A

Mona x A
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Eigenstuff: Geometric motivation

v1 and v2 are eigenvectors

v3 is not
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Eigenstuff: Geometric motivation

Thus, v1 and v2 are special vectors with 
respect to the matrix A, which are mapped to 
vectors in the same direction, i.e., for which

A v = v          = scalar

When this relation holds: 

• v is called an eigenvector (latent vector) of the matrix A

• is the corresponding eigenvalue (latent root)

An n x n matrix has n (eigenvector – eigenvalue) pairs
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Finding eigen solutions
• Finding eigenvectors of a matrix naturally gives rise to a 

set of homogeneous equations, since:

• This system has non-trivial solutions only for values of 
for which rank (A – I) < n

• This implies (A – I A – I|=0
• This characteristic equation

eigenvalues
• (Modern software uses more efficient methods)

( )Av v v 0 Iv A vA 0

A – I|=0
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Finding eigen solutions

For a 2 x 2 symmetric matrix, A,
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This is a quadratic equation that can (usually) be solved for two distinct 
values, 1& 2. Writing the quadratic as
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Finding eigen solutions
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Power method
• The power method is an easy way to find the eigenvector, v1, 

corresponding to the largest eigenvalue, 1, among 1 2 n. 
Initialize: v1

(0) = 1 (any non-zero vector)
Iterate: v1

(k+1) = A v1
(k) / ||A v1

(k)||
Until: v1

(k+1) v1
(k)

Then, 
1 1

1
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e.g.:

This is the idea behind the computation for 
the Google page rank algorithm 16

Properties of eigenvalues and eigenvectors

For an n x n matrix, A:

• The characteristic equation | A – I | = 0
has n roots, 1 2 n

if A is symmetric, roots are real (otherwise: complex)

•

•

1
( )i

n

i
trace A

1 2
1

det( )i n

n

i

A

Two measures of “size” of A in 
n dimensions. In MANOVA:

• Hotelling trace criterion

• Wilks’ Lambda
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Properties of eigenvalues and eigenvectors

• If any i = 0, then A is singular
# non-zero i = rank(A) = # dimensions of A space
# zero i = # linear dependencies

• If i j, latent vectors are orthogonal & unique
i.e., vi

T vj = 0
If i = j, vectors not unique, but chosen orthogonal

• Latent vectors are determined in direction, but not length
Usually, standardized so that length, ||vi||=1
Any scalar multiple, k vi also a latent vector

signs/scaling of loadings are arbitrary
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Example: R
2 1 1
1 2 1
1 1 2

A
| | 4 iA

( ) 6 itrace A

The characteristic equation, | A – I | = 0 gives: 3 2 06 9 4
The roots, , are: 4, 1, 1

library(matlib)

(A <- J(3, 3) + diag(3))

tr(A)     # sum of eigenvalues

det(A)    # product of eigenvalues

(ev <- eigen(A))

# eigenvectors are orthogonal

V <- ev$vectors

zapsmall( V %*% t(V) )

Let’s try this in R:

eigen() function

Example: R output
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> library(matlib)

> (A <- J(3, 3) + diag(3))

[,1] [,2] [,3]

[1,] 2    1    1

[2,] 1    2    1

[3,] 1    1    2

> tr(A)     # sum of eigenvalues

[1] 6

> det(A)    # product of eigenvalues

[1] 4

> (ev <- eigen(A))

$values

[1] 4 1 1

$vectors

        [,1]    [,2]    [,3]

[1,] -0.5774  0.0000  0.8165

[2,] -0.5774 -0.7071 -0.4082

[3,] -0.5774  0.7071 -0.4082

> # eigenvectors are orthogonal

> V <- ev$vectors

> zapsmall( V %*% t(V) )

[,1] [,2] [,3]

[1,] 1    0    0

[2,] 0    1    0

[3,] 0    0    1

No 0 eigenvalues; r(A)=3

Eigenvectors are orthogonal,
V’V=I, and have unit length

Last 2 eigenvalues are equal, 
so eigenvectors are not unique
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Implications

Here, we are just collecting the vi and i in matrices.
But this has interesting applied implications



Implications: Spectral decomposition
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(3) Spectral decomposition: From (1) and (2), we can write A as

1 1 1 2 22
T T T

n n nA v v v v v v

2 1 1 1 0 2
4 1 11 2 1 1 1 1 1 1 0 1 1 1 2 1 1

.5774 .408221 1 2 1 1 1
A

A sum of rank 
1 matrices

Ex:

This is the basis for PCA: fewer terms can approximate A

1 1

2 2
1 2  

T

T
T

n

T
n n

V

v
v

A

v

v v v

or

Implications: Matrix powers
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(4) Eigenvalues of matrix inverse & powers:

1 1 1 1 because, if so:T T TA V V AA V V V V I

Hence,

• Eigenvectors of A-1 are the same as those of A

• Eigenvalues of A-1 are 1/ i

Similarly:

• So, eigenvalues of A2 are i
2 and eigenvectors V are the same

• This applies to all powers of a matrix

2 2     T T TVA
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Implications: Orthogonality

In applications here, A is usually a covariance matrix, S, of a matrix of 
variables, Y. Then,

V S V’ =   is the covariance matrix of the transformed variables, Y V.  That 
is diagonal means the transformed variables are uncorrelated.

(5) Rearranging (3), A = V VT gives:

Hence, transforming A by V and VT :

gives an orthogonal matrix – uncorrelated variables, which are linear 
combinations of the original ones; the weights are the eigenvectors in V.

1

2

0

( )

0

T T T

n

V AV VV

28

Implications: Maximization
• (6) If vi’ vi = 1(unit length), then (1) A vi = i vi can be 

written as
                        vi’ A vi = i

• But, v’ A v is the variance of a linear combination, with 
weights in v.

• Hence, to find a v which maximizes v’ A v, choose v = v1
= eigenvector corresponding to largest eigenvalue, 1

The maximum variance is then 1

• In statistical applications, A = covariance matrix of a set 
of variables

Many other problems of maximizing (or minimizing) something 
have eigenvalue – eigenvector solutions!



Maximizing variance
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To see what this means, consider the relation between x & y.

What is the direction along which the variance of the points is greatest?

Maximizing variance
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Imagine a vector rotating around the mean of (x,y)

The projection of points on the vector has maximum variance at one position –
the eigenvector

Maximizing variance
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Now imagine that the points are connected to the vector by springs.

The vector finds its position – the eigenvector – by balancing the forces from 
the springs!  (This is equivalent to a least squares solution for the spring 
lengths)

Images from ameoba,, http://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues 
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Geometric interpretation

For n variables, we can 
represent data in a space with 
orthogonal axes

The variables are typically 
correlated

v’ A v = constant represents 
an ellipse of constant 
distance from the mean

Usually, A = S-1, the inverse 
of a covariance matrix
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Geometric interpretation

Latent vectors, v1, v2 are the 
major/minor axes of the data 
ellipse.

They are orthogonal to each 
other and at right angles to 
the tangents to the ellipse

Latent roots 1, 2 are the 
half-lengths of the major and 
minor axes

34

Geometric interpretation
Imagine a rotation of the original 
space to one where v1, v2 become 
the new coordinate axes

• These vectors span the same 
space

• They represent uncorrelated
variables referred to orthogonal 
axes (principal component scores)

• Total variance of the x1, x2, …, xn
variables = i = total variance of 
the v1, v2, …, vn 2

1
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Geometric interpretation
For given data, we can see this by plotting the data 
and their principal component scores, together with 
data ellipses
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Geometric interpretation
In 3D, with animation, this can be shown more clearly
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Application: Finding outliers
In multivariate data, outliers are often associated with the 
smallest eigenvalue(s) of covariance matrix, S

v1

v2
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Singular Value Decomposition & biplots

• Eigenvalues/vectors are usually defined just for square 
matrices (covariance, correlation)

• For rectangular matrices (i.e., a data matrix), an 
analogous result is the SVD – also called the basic 
structure of a matrix
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Mathematical definition of the SVD

• Let X denote an m x n matrix of data, rank(X)= r, m n

• The singular value decomposition of X is:

where: 
U is an m x n matrix (observation scores), 

is an n x n diagonal matrix of singular values, and 
VT is also an n x n matrix (variable weights).

    Only the first r values of i are non-zero.

TX U
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Mathematical definition of the SVD
• V: columns are the eigenvectors of XTX and form an 

orthonormal basis (VTV = I) for the variables
• :  diagonal, r singular values are the square roots of 

the eigenvalues of both XXT and XTX
• U: columns are the eigenvectors of XXT and form an 

orthonormal basis for the observation profiles, so that 
UTU = I
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If that’s not clear: the SVD song

http://www.youtube.com/watch?v=JEYLfIVvR9I
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Matrix approximation

• Let X be an m x n matrix such that rank(X) = r
• If 1 2 ... r are the singular values of X,

then     , the rank q approximation of X
that minimizes                   , is

X̂
|| ˆ ||X X

a sum of q rank=1 (outer) products. The variance in 
X accounted for each term is 1

2

1

1 1 1 1
1

ˆ
iq

T T
m n i i in q q q

i
im

u
v u

u
v uv vX

row scores

column scores
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Application: Image compression
• Digital images often require huge files
• For some purposes, a low-dimensional approx. based on the SVD 

may be sufficient
• This allows to vary the trade-off between fidelity and file size

color
600 x 465 x 3

grayscale
600 x 465 = 484k

1 dimension
600 + 465 + 1 = 1k

5 dimensions
5(600 + 465 + 1) = 5k

color
600 x 465 x 3

grayscale
600 x 465 = 484k 

1 dimension
600 + 465 + 1 = 1k
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Application: Image compression

Trade-off between image 
fidelity and file size

At what point is the image 
recognizable?

File size grows linearly

% variance doesn’t seem to 
be a useful measure of 
visual fidelity.

Animation produced with the R 
package, animation



Netflix prize: Sparse SVD

• Netflix, Amazon & others use recommender systems to advertise, based on 
your picks and ratings of others

• In 2006, Neflix offered a $1M prize for any algorithm that could beat their 
own RMSE by 10% or more

• The analysis is based on a huge table of ratings by users (~500,000) by 
items (~20,000), most of which (~99.9%) is missing.

• In 2009, the grand prize was awarded to the Bellcore team (“Pragmatic 
Chaos”)

• Their algorithm used a variation of the SVD specially designed for huge, thin 
datasets (+ other methods)

• Today, this problem is a hotbed of research activity in statistics and 
computer science
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Biplot approximation

• A rank 2 (or 3) approximation to the data matrix can be 
obtained from the first 2 (or 3) singular values i and the 
corresponding ui, vi. e.g.,

• The goodness of fit (variance acct’d for) is

• Biplot is obtained by representing the matrix X as the 
product

1 1 1 2 22
ˆ T Tu v u vX X

2
1

2 2
1( ) /

q

i
i

1/2 1/2)ˆ ( ( )T TX U V AB
row scores

column scores
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Biplot: US crime rates
Dim1: ~ Overall crime rate

Dim2: Property vs. personal

Note: clusters of southern, New 
England, western states 

This 2D biplot shows 76.5% of 
total variance, the projection of 
the data into the 2D space 
acct’ing for maximum variance.

It gives a low-D summary of 7 
variables and 50 observations.
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Biplot: US crime rates

A 3rd dimension accounts 
for an additional 10.3%, 
giving 86.8% explained 
variance.
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Application: Collinearity
In multiple regression, collinearity among Xs is 
associated with the smallest eigenvalue(s).

A collinearity biplot shows 
the two smallest dimensions 
in X space, as well as 
“outliers” (high-leverage 
points)
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Exploring 
high-D data
Dynamic, interactive graphics 
from ggobi, showing PC-
based rotations of 6-D data

Interesting features, clusters 
are selected (“brushed”), 
painted (assigned colors) 

Each view can show PC or X 
vectors as frame of reference

Repeat:
{spin, brush, paint}
until {no more clusters}

Image from: http://www.ggobi.org/book/2007-infovis/05-clustering.pdf
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Summary: Why you should like eigenstuff

• Eigenvalues & vectors distill the “juice” in 
multivariate data

i = size of each orthogonal dimension
#( i 0) = rank = # non-zero dimensions
vi = weights of variables in each linear combination
small, non-zero i relate to outliers & collinearity

•
PCA, FA
MANOVA, MMreg, discriminant analysis

• Important in visualization of high-D data


