m=n m=n nen nen

Eigenstuff: Almost everything you ever wanted to know about

Eigenvalues & eigenvectors

...but were too afraid to ask

Eigernalues, sigenvectors and the data elipse RAotated 1o PC vectors

Michael Friendly il
Psychology 6140 - -+

Eigenstuff. Statistical motivations

* Usually used in analysis of a covariance (S) or
correlation matrix (R)

= PCA: principal components are just eigenvectors of S or R;
eigenvalues give the % of variance accounted for

= FA: similar, but based on a “reduced” S or R, accounting for only
common variance
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Eigenstuff. Statistical motivations

e Same ideas are used in low-D approximations to
visualize high-D data, models in 2 (or 3) dimensions

* Fundamental for generalizing univariate (F) tests to
multivariate tests (e.g., Wilk's A, Hotelling trace, ...) in
MReg & MANOVA

= Eigenvalues of H E'! — multivariate test statistics
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Eigenstuff: Everyday applications

How does
Google find
me?

At the dawn of the
www, there were many
search engines

Google became
dominant because
they recognized that
page search had an
eigenvalue solution.

Someone called the
result the $25 billion
eigenvector
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Eigenstuff: Everyday applications

* Google Page Rank algorithm (run often)
= Importance of a page (r;): a function of
« # of other pages (L;) linking to it }
* the importance of each linking page

paths thru
network

Network diagram of page links

Hyperlink matrix (1/ L)

0 0 0 0 0 0 13 0
/2 0 1213 0 0 0 0
/20 0 0 0 0 0 O

Ho|0 1 0 0 00 0 0
0 0 1213 0 0 13 0
0 0 0 1/31/30 0 1/2
0 0 0 0 130 0 1/2
000 0 0 131 13 0

But: the WWW has > 30 billion pages! — Do this bit by bit, many robots, many servers

Eigenstuff: Everyday applications

e Start with r© = 1. Condition for a stable solution:
Hr=r

* — r = eigenvector of H assoc. with A=1 (largest).

* Solution: power method: r &) = H r ()

[ 0.0600 ] Network diagram shaded by importance
0.0675
0.0300
r= | 0.0875
0.0975
0.2025
0.1800
0.2950

See: http://www.ams.org/featurecolumn/archive/pagerank.html Lig hter = more important 6

Emerging applications: Eigenfaces

Computer vision & automatic face recognition

Digitize, align & normalize a large # of pics
» Each m x n pic — mn vector of pixel values
« Calculate covariance matrix, S, of images

« Eigenvectors of S are “eigenfaces”

5

Any new face can be
approximated by a linear
combination of eigen
faces

This is one reason why you can’t smile in passport photos!
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Eigenstuff: Definitions

* For a square matrix, Ay, @ vector v is an
eigenvector of A, if there exists a scalar, A, for
which

a, ... a, (v, A
or, T D=

a“nl ann Vn Vn

Anxnvnxl = ;Lvnxl

* The value A is the corresponding eigenvalue

* Other terms: latent vectors (v), latent roots (A),
characteristic vectors/roots.




Eigenstuff: Geometric motivation

Linear transformation of Mona Lisa

Eigenvectors arise from what happens

to a vector v under transformation by a

matrix A

shear transform, given by

L ; Mona x A S }

0 1

direction— an eigenvector of A
Av=Av

The blue vector (1,1) is changed in
direction— not an eigenvector

AVZEAvV

Here, Mona is subjected to a horizontal

1 k
A= —> Mona x A

The red vector (0,1) is unchanged in

Eigenstuff: Geometric motivation
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Eigenstuff: Geometric motivation

Thus, v, and v, are special vectors with
respect to the matrix A, which are mapped to N, AN3
vectors in the same direction, i.e., for which '

Av=Av A = scalar Ny Ny

When this relation holds:
¢ v is called an eigenvector (latent vector) of the matrix A

* A is the corresponding eigenvalue (latent root)

An n x n matrix has n (eigenvector — eigenvalue) pairs
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Finding eigen solutions

Finding eigenvectors of a matrix naturally gives rise to a
set of homogeneous equations, since:

Av=Av =>Av-Av=0=|(A-Al)v=0

This system has non-trivial solutions only for values of A
for which rank (A — Al) <n

This implies (A — Al) is singular — |A — Al|=0
This characteristic equation — one way to find
eigenvalues

(Modern software uses more efficient methods)
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Finding eigen solutions

For a 2 x 2 symmetric matrix, A,

|A_/f“|=‘[a11 alZ)_(ﬂ‘ sz
a, a, 0 4

= (all - ﬂ)(azz - /1) - a122

=7 _(311 + azz)l + (a11azz - a122) =0

&, - A a;,
a,, ay, —

This is a quadratic equation that can (usually) be solved for two distinct
values, A\, & A,. Writing the quadratic as

—b++/b%—4ac b=(a, +a,)=trace(A)

2 — —
A"+bi+c=0= 1= 23 ¢ =(a,a,, —a’) = det(A)

13

Finding eigen solutions
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Power method

* The power method is an easy way to find the eigenvector, v;,
corresponding to the largest eigenvalue, A;, among A; 2\, = ... ZA,.
= |nitialize: v;©@ = 1 (any non-zero vector)
= [terate: v, & = Av,® [ ||A v, 0|
= Until: v, D = v,

- Then, B Vj_T Avl
=—=
VvV, VvV, v 7.3
1 v, =

vor_ -3.1
5.2

This is the idea behind the computation for
the Google page rank algorithm

Properties of eigenvalues and eigenvectors
For an n x n matrix, A:

* The characteristic equation | A—=A1]|=0
®= has nroots, A;2 A\, 2 ... 2,
= if A is symmetric, roots are real (otherwise: complex)

Two measures of “size” of A in
n dimensions. In MANOVA:

« Hotelling trace criterion
» Wilks’ Lambda

o > A =trace(A)
i=1

o [T =Ax 2o xoxs, = det(a)
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Properties of eigenvalues and eigenvectors

* Ifany A, = 0, then A is singular
= # non-zero A, = rank(A) = # dimensions of A space
= # zero A, = # linear dependencies

* If A # A, latent vectors are orthogonal & unique

" je., v’ v;=0

= IfA= )\J-, vectors not unique, but chosen orthogonal
* Latent vectors are determined in direction, but not length
= Usually, standardized so that length, ||v;||=1
= Any scalar multiple, k v; also a latent vector
= — PCA, FA: signs/scaling of loadings are arbitrary

Example: R
trace(A)=6=> 1

2 11
A=|1 2 1
11 2 |Al=4=]]4
The characteristic equation, | A=Al |=0gives: A°-61°+91-4=0
The roots, A, are: 4,1, 1
Let’s try this in R:
library(matlib)
(A <-J3(3,3) +diag(3))
tr(A) #sum of eigenvalues
det(A) # product of eigenvalues

(ev <- eigen(A)) +—— eigen() function

# eigenvectors are orthogonal

V <- ev$vectors

17 zapsmall(V %% t(V) ) 18
Example: R output Implications

> library(matlib) > (ev <- eigen(A))
>(IA<-yJ(3, 3;+diag(3)) $val\l/1es | No 0 eigenvalues; r(A)=3 M V(Ml\) = ('\-;1; '!’-; ry"‘) be "@W "“‘ ell n

L2131 411 a%‘,&b MM'G, Al - DR DIy PN
w21t Last 2 eigenvalues are equal, - M 0 _ ‘:;}: [) 2. .val 24
2l 121 $vectors S0 eigenvectors are not unique het A ( 0 \L-‘.-l“ d MW 6‘1‘ s
B] 1 1 2 [1 [2] [3]

>1tr(A) # sum of eigenvalues
116

> det(A) # product of eigenvalues
114

[1,]-0.5774 0.0000 0.8165
[2,]-0.5774 -0.7071 -0.4082
[3,]-0.5774 0.7071 -0.4082

> # eigenvectors are orthogonal
>V <- ev$vectors
> zapsmall( V %*% t(V) )

[11[.2] 3] .
a] 1 0 0 Eigenvectors are orthogonal,
' V'V=l, and have unit length
2] 0 10
B] 0 0 1
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M Ay =aw = AV = VA

@ nN=e = V'V =1
V= 1

At AL onve
Saled so =1,

Here, we are just collecting the v, and A, in matrices.
But this has interesting applied implications

22




Implications: Spectral decomposition

(3) Spectral decomposition: From (1) and (2), we can write A as

A

.
1
T
= [V1 v, Vn] 4 Vo

A = VAV’

_' e

or
A sum of rank

21V1V1 +//LZV V2 +---4+ V V 1 matrices
Ex: \ \

l 11) +— -1|(0 -1 1)+ —1 -1 —1)
—.5774 J2 4082
1 1 -1

This is the basis for PCA: fewer terms can approximate A 24

Implications: Matrix powers

(4) Eigenvalues of matrix inverse & powers:

A7l = VA" because, ifso: AAT=VAV'T VA VT

Hence,
» Eigenvectors of Al are the same as those of A
» Eigenvalues of A are 1/\,
o 2 T T 2%sT
Similarly: A = VAV VAV = VAV
» So, eigenvalues of A2 are A? and eigenvectors V are the same

» This applies to all powers of a matrix
25

Implications: Orthogonality

(5) Rearranging (3), A =V A VT gives: p) 0

VIAV=VT(VAV')V = A =

Hence, transforming A by V and VT :

gives an orthogonal matrix — uncorrelated variables, which are linear
combinations of the original ones; the weights are the eigenvectors in V.

In applications here, A is usually a covariance matrix, S, of a matrix of
variables, Y. Then,

V SV’ = A is the covariance matrix of the transformed variables, Y V. That

A is diagonal means the transformed variables are uncorrelated.
27

Implications: Maximization

* (6) If v/ v; = 1(unit length), then (1) A v, = A, v, can be

written as
Vi AV, =N\

e But, v’ A v is the variance of a linear combination, with
weights in v.

* Hence, to find a v which maximizes v’ A v, choose v = v,
= eigenvector corresponding to largest eigenvalue, A;

* The maximum variance is then A,

* |n statistical applications, A = covariance matrix of a set

of variables

= Many other problems of maximizing (or minimizing) something
have eigenvalue — eigenvector solutions!

28




Maximizing variance

To see what this means, consider the relation between x & y.

What is the direction along which the variance of the points is greatest?

29

Maximizing variance

Imagine a vector rotating around the mean of (x,y)

The projection of points on the vector has maximum variance at one position —
the eigenvector

30

Maximizing variance

Now imagine that the points are connected to the vector by springs.

The vector finds its position — the eigenvector — by balancing the forces from
the springs! (This is equivalent to a least squares solution for the spring
lengths)

Images from ameoba,, http://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
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Geometric interpretation

For n variables, we can
represent data in a space with
orthogonal axes

X

The variables are typically
correlated

v’ A v = constant represents
an ellipse of constant
distance from the mean

X,

Usually, A = S1, the inverse
of a covariance matrix
32




Geometric interpretation

Latent vectors, v,, v, are the
major/minor axes of the data
ellipse.

They are orthogonal to each
other and at right angles to
the tangents to the ellipse

Latent roots A,, A, are the
half-lengths of the major and

minor axes

X,

33

Geometric interpretation

Imagine a rotation of the original
space to one where v,, v, become
the new coordinate axes

* These vectors span the same
space

* They represent uncorrelated
variables referred to orthogonal X,
axes (principal component scores)

* Total variance of the xy, X,, ..., X,
variables = ¥ A, = total variance of
the vy, vy, ..., Vv,

il
kl

34

Geometric interpretation

For given data, we can see this by plotting the data
and their principal component scores, together with
data ellipses

Eigervalues, sigenvedors and the data ellipss Ratated to PC wedors

w2
Ll

-z

T H B T n e B H - =4 = =2 =1 @ 1z H 4 2 8
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Geometric interpretation

In 3D, with animation, this can be shown more clearly

6 Sepal Length

Petal Length

Sepal Width
36




Application: Finding outliers

In multivariate data, outliers are often associated with the
smallest eigenvalue(s) of covariance matrix, S

Ex 1: Scatterplot shows bivariate outliers

Ex 1: Scatterplot rotated to principal components

Singular Value Decomposition & biplots

* Eigenvalues/vectors are usually defined just for square
matrices (covariance, correlation)

* For rectangular matrices (i.e., a data matrix), an

. analogous result is the SVD — also called the basic
. . ® structure of a matrix
2 1 _ X =UAV”
, -‘e K//”;_ .\\\\ Ohser\ratlons .‘\SIII:I:_'HI:.I! Va.ri;ables
g \*«é* ") = pi e e
. - U N = .
’ : - J:’/
. - "
B : ®
= = - ] 2 ? N - - - - nen . = m=n n=n oy 38
Mathematical definition of the SVD Mathematical definition of the SVD
* V: columns are the eigenvectors of XTX and form an
. is (VTV = variabl
* Let X denote an m x n matrix of data, rank(X)=r, m=n orthqnormal bas_us (VIV = 1) for the variables
* A: diagonal, r singular values are the square roots of
* The singular value decomposition of X is: the eigenvalues of both XXT and XTX
* U: columns are the eigenvectors of XXT and form an
X — UAVT orthonormal basis for the observation profiles, so that
utu =1
where: X=UAV’
= U is an m x n matrix (observation scores), conmt Singular , e
= Ais an n x n diagonal matrix of singular values, and — A\ ' vl i
= VTis also an n x n matrix (variable weights). U LoNC| I P
Only the first r values of A, are non-zero. MR—
g].’
39 ml 40

m=n m*n n=n nsn




If that’s not clear: the SVD song

It Had To Be U

wuiﬂf"’

The Singular Value Decomposition

(SVD)

http://www.youtube.com/watch?v=JEYLflIVVR9I

41

Matrix approximation

* Let X be an m x n matrix such that rank(X) =r

* IfA; 2A, > ... 2 A are the singular values of X,
then x , the rank g approximation of X
that minimizes || X =X || ,is
u column scores
. q il
Xm><n = zﬂ'l (Vil
- l"Iim \

row scores

T T
Vi) = AUV +- 4+ AUV

a sum of g rank=1 (outer) products. The variance in

X accounted for each term is A,
42

Application: Image compression

* Digital images often require huge files

* For some purposes, a low-dimensional approx. based on the SVD
may be sufficient

e This allows to vary the trade-off between fidelity and file size

color grayscale 1 dimension 5 dimensions

600 X 465 x 3 600 x 465 = 484k 600 + 465 + 1 = 1K 5(600 + 465 + 1) = 5k

43

Application: Image compression

1/465 dim, 83 % var, 1 Kb

Trade-off between image
fidelity and file size

At what point is the image
recognizable?

File size grows linearly

% variance doesn't seem to
be a useful measure of
visual fidelity.

SVD sz (Kb)

Animation produced with the R
package, animation

44
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Netflix prize: Sparse SVD

Netflix, Amazon & others use recommender systems to advertise, based on
your picks and ratings of others

In 2006, Neflix offered a $1M prize for any algorithm that could beat their
own RMSE by 10% or more

The analysis is based on a huge table of ratings by users (~500,000) by
items (~20,000), most of which (~99.9%) is missing.

In 2009, the grand prize was awarded to the Bellcore team (“Pragmatic
Chaos”)

Their algorithm used a variation of the SVD specially designed for huge, thin
datasets (+ other methods)

Today, this problem is a hotbed of research activity in statistics and
computer science

Biplot approximation

* Arank 2 (or 3) approximation to the data matrix can be
obtained from the first 2 (or 3) singular values A, and the
corresponding u;, v;. e.g.,

X~ X = AUNT + ALUV]
* The goodness of fit (variance acct'd for) is

(2 + 3134

* Biplot is obtained by representing the matrix X as the
product /column scores
> Y2\ f A2y /T Sa
X = (UA % V')=AB
/

Dimension 1 (58.8%)

45 46
row scores
Dim1: ~ Overall crime rate
Dim2: Property vs. personal A —;’h T — A 3 dimension accounts
Auto _ o ~ for an additional 10.3%,
farceny Note: clusters of southern, New ey | giving 86.8% explained
RI MA /A England, western states variance.
g HI ,/// Burglary mauito Sarceny '
= ‘&5 CAZ Robber i,
o ND ar ﬁ / This 2D biplot shows 76.5% of ]l A —~urglary
g SD &BPB‘ NV : - WO e, T
2 % Fl total variance, the projection of 20T S 2
£ PN Ny Rape the data into the 2D space SDeK Rl g [*
e C &Q . acct'ing for maximum variance. Gy “ape
MS Assault . AL Lhec
\ It gives a low-D summary of 7 Ms (Basal L 4
N\ variables and 50 observations.
Murder nurdey
-1 0 1 2 47 48
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Application: Collinearity

In multiple regression, collinearity among Xs is
associated with the smallest eigenvalue(s).

Condition Proportion of Variation (x 100)
Number Index Eigenvalue | Weight Year Engine Horse Accel Cylinder
6 10.96 0.03545 18 1 98 4 1 56
5 8.43 0.05987 71 7 0 66 49 11
05
) ) ; 1 engine
A collinearity biplot shows 041
the two smallest dimensions 03
in X space, as well as % 021
“outliers” (high-leverage S o1
points) g ool
£ | horse
& 011
weight
0.2 |
.us. T sevlinder 34
P oo g 49
£5 04 03 02 01 00 01 02 03 04 05 06 07 08

Dimension 5 (0.98%)

Initial projection...
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Image from: http://www.ggobi.org/book/2007-infovis/05-clustering.pdf
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Brush,Brush,Spin...

...Finished!

W

Exploring
high-D data

Dynamic, interactive graphics
from ggobi, showing PC-
based rotations of 6-D data

Interesting features, clusters
are selected (“brushed”),
painted (assigned colors)

Each view can show PC or X
vectors as frame of reference

Repeat:
{spin, brush, paint}
until {no more clusters}
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Summary: Why you should like eigenstuff

* Eigenvalues & vectors distill the “juice” in
multivariate data
= )\ = size of each orthogonal dimension
= #(\#0) = rank = # non-zero dimensions
= v; = weights of variables in each linear combination
= small, non-zero A relate to outliers & collinearity
* Many multivariate methods — eigen problems
= PCA, FA
= MANOVA, MMreg, discriminant analysis

* Important in visualization of high-D data
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