Output from faccorr.sas

Source
0 Graphs

Demonstration of Partial Linear Independence principle 1 Simple Correlations among TESTS

                             Correlation Analysis
             4 'VAR' Variables:  MAT_TEST ENG_TEST SCI_TEST HIS_TEST

                Pearson Correlation Coefficients  / N = 800
                        MAT_TEST       ENG_TEST       SCI_TEST       HIS_TEST

 MAT_TEST                1.00000       -0.00417        0.41370       -0.21101
 Mathematics test
 ENG_TEST               -0.00417        1.00000       -0.14758        0.26917
 English test
 SCI_TEST                0.41370       -0.14758        1.00000       -0.24453
 Science test
 HIS_TEST               -0.21101        0.26917       -0.24453        1.00000
 History test

Demonstration of Partial Linear Independence principle 2 Partial Correlations among TESTS, partialling Factors

                             Correlation Analysis
           2 'PARTIAL' Variables:  MATH     VERBAL
           4 'VAR'     Variables:  MAT_TEST ENG_TEST SCI_TEST HIS_TEST

            Pearson Partial Correlation Coefficients  / N = 800
                        MAT_TEST       ENG_TEST       SCI_TEST       HIS_TEST

 MAT_TEST                1.00000        0.06096       -0.00293       -0.02595
 Mathematics test
 ENG_TEST                0.06096        1.00000        0.02505       -0.06677
 English test
 SCI_TEST               -0.00293        0.02505        1.00000       -0.00846
 Science test
 HIS_TEST               -0.02595       -0.06677       -0.00846        1.00000
 History test

Demonstration of Partial Linear Independence principle 3 Retrieving the factor structure

Initial Factor Method: Principal Components

                     Prior Communality Estimates: ONE

        Eigenvalues of the Correlation Matrix:  Total = 4  Average = 1
                                1           2           3           4
         Eigenvalue        1.6709      1.0695      0.7019      0.5577
         Difference        0.6014      0.3675      0.1443
         Proportion        0.4177      0.2674      0.1755      0.1394
         Cumulative        0.4177      0.6851      0.8606      1.0000
             2 factors will be retained by the NFACTOR criterion.

                                Factor Pattern
                          FACTOR1   FACTOR2

               MAT_TEST   0.67941   0.53070    Mathematics test
               ENG_TEST  -0.43800   0.76245    English test
               SCI_TEST   0.75789   0.27954    Science test
               HIS_TEST  -0.66564   0.35827    History test
                      Variance explained by each factor
                                FACTOR1   FACTOR2
                               1.670908  1.069471

                Final Communality Estimates: Total = 2.740378

                     MAT_TEST  ENG_TEST  SCI_TEST  HIS_TEST
                     0.743241  0.773164  0.652543  0.571431

Demonstration of Partial Linear Independence principle 4 Retrieving the factor structure

Rotation Method: Varimax

                       Orthogonal Transformation Matrix
                                       1         2

                             1      0.81299  -0.58228
                             2      0.58228   0.81299
                            Rotated Factor Pattern
                          FACTOR1   FACTOR2

               MAT_TEST   0.86137   0.03585    Mathematics test
               ENG_TEST   0.08788   0.87490    English test
               SCI_TEST   0.77893  -0.21405    Science test
               HIS_TEST  -0.33254   0.67886    History test
                      Variance explained by each factor
                                FACTOR1   FACTOR2
                               1.466988  1.273391

                Final Communality Estimates: Total = 2.740378

                     MAT_TEST  ENG_TEST  SCI_TEST  HIS_TEST
                     0.743241  0.773164  0.652543  0.571431