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Overview

Two-way tables: Overview

Two-way contingency tables are a convenient and compact way to represent a
data set cross-classified by two discrete variables, A and B.

Special cases:
2× 2 tables: two binary factors (e.g., gender, admitted?, died?, ...)
2× 2× k tables: a collection of 2× 2s, stratified by another variable
r × c tables
r × c tables, with ordered factors

Questions:
Are A and B statistically independent? (vs. associated)
If associated, what is the strength of association?
Measures: 2× 2— odds ratio; r × c— Pearson χ2, LR G2

How to understand the pattern or nature of association?
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Overview Examples

Two-way tables: Examples

2× 2 table: Admissions to graduate programs at U. C. Berkeley

Table: Admissions to Berkeley graduate programs

Admitted Rejected Total % Admit Odds(Admit)
Males 1198 1493 2691 44.52 0.802
Females 557 1278 1835 30.35 0.437
Total 1755 2771 4526 38.78 0.633

Males were nearly twice as likely to be admitted.
Association between gender and admission?
If so, is this evidence for gender bias?
How do characterise strength of association?
How to test for significance?
How to visualize?
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Overview Examples

2× 2 tables: UCB data
In R, the data is contained in UCBAdmissions, a 2× 2× 6 table for 6
departments. Collapse over department:

data(UCBAdmissions)
UCB <- margin.table(UCBAdmissions, 2:1)
UCB

## Admit
## Gender Admitted Rejected
## Male 1198 1493
## Female 557 1278

Association between gender and admit can be measured by the odds ratio,
the ratio of odds of admission for males vs. females. Details later.

oddsratio(UCB, log=FALSE)

## odds ratios for Gender and Admit
##
## [1] 1.8411

confint(oddsratio(UCB, log=FALSE))

## 2.5 % 97.5 %
## NA NA
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How to analyse these data?
How to visualize & interpret the results?
Does it matter that we collapsed over Department?



Overview Examples

Two-way tables: Examples
r × c table: Hair color and eye color— Students in a large statistics class.

Table: Hair-color eye-color data

Eye Hair Color
Color Black Brown Red Blond Total
Brown 68 119 26 7 220
Blue 20 84 17 94 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64
Total 108 286 71 127 592

Association between hair color and eye color?
How do characterise strength of association?
How to test for significance?
How to visualize?
How to interpret the pattern of association?
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Overview Examples

r × c tables: HEC data

In R, the data is contained in HairEyeColor, a 4× 4× 2 table for males and
females. Collapse over gender:

data(HairEyeColor)
HEC <- margin.table(HairEyeColor, 2:1)

Association between hair and eye color can be tested by the standard
Pearson χ2 test. Details later.

chisq.test(HEC)

##
## Pearson's Chi-squared test
##
## data: HEC
## X-squared = 138, df = 9, p-value <2e-16
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Overview Examples

Two-way tables: Examples
r × c table with ordered categories: Mental health and parents’ SES

Table: Mental impairment and parents’ SES

Mental impairment
SES Well Mild Moderate Impaired

1 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78
6 21 71 54 71

Mental impairment is the response, SES is the predictor
How do characterise strength of association?
How to interpret the pattern of association?
How to take ordinal nature of the variables into account?

8 / 64



Overview Examples

ordered r × c tables: Mental data I
In R, the data is contained in Mental in vcdExtra, a frequency data frame.

data(Mental, package="vcdExtra")
str(Mental)

## 'data.frame': 24 obs. of 3 variables:
## $ ses : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 1 1 1 1 2 2 2 2 3 3 ...
## $ mental: Ord.factor w/ 4 levels "Well"<"Mild"<..: 1 2 3 4 1 2 3 4 1 2 ...
## $ Freq : int 64 94 58 46 57 94 54 40 57 105 ...

Convert to a contingency table using xtabs(), and test association:

mental.tab <- xtabs(Freq ˜ ses + mental, data=Mental)
chisq.test(mental.tab)

##
## Pearson's Chi-squared test
##
## data: mental.tab
## X-squared = 46, df = 15, p-value = 5.3e-05
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Overview Examples

ordered r × c tables: Mental data II

For ordinal factors, more powerful tests are available with
Cochran-Mantel-Haenszel tests:

CMHtest(mental.tab)

## Cochran-Mantel-Haenszel Statistics for ses by mental
##
## AltHypothesis Chisq Df Prob
## cor Nonzero correlation 37.2 1 1.09e-09
## rmeans Row mean scores differ 40.3 5 1.30e-07
## cmeans Col mean scores differ 40.7 3 7.70e-09
## general General association 46.0 15 5.40e-05

Details later, but χ2/df gives a useful comparison.

## cor rmeans cmeans general
## 37.16 8.06 13.56 3.06
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2 by 2 tables

2 by 2 tables: Notation

Column
Row 1 2 Total
1 n11 n12 n1+

2 n21 n22 n2+

Total n+1 n+2 n++

Gender Admit Reject Tot
Male 1198 1493 2691

Female 557 1278 1835
Total 1755 2771 4526

N = {nij} are the observed frequencies.
+ subscript means sum over: row sums: ni+; col sums: n+j ; total sample
size: n++ ≡ n
Similar notation for:

Cell joint population probabilities: πij ; also use π1 = π1+ and π2 = π2+

Population marginal probabilities: πi+ (rows), π+j (cols)
Sample proportions: use pij = nij/n, etc.
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2 by 2 tables

Independence

Two categorical variables, A and B are statistically independent when:
The conditional distributions of B given A are the same for all levels of A

π1j = π2j = · · · = πrj

Joint cell probabilities are the product of the marginal probabilities

πij = πi+π+j

For 2× 2 tables, this gives rise to tests and measures based on
Difference in row marginal probabilities: test H0 : π1 = π2
Odds ratio
Standard χ2 tests also apply for large n
Fisher’s exact test or simulation required in small samples.
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2 by 2 tables

Independence: Example I

In the Arthritis data, people are classified by Sex, Treatment and
Improved. Are Treatment and Improved independent?

→ row proportions are the same for Treated and Placebo
→ cell frequencies ∼ row total × column total

data(Arthritis, package="vcd")
arth.tab <- xtabs( ˜ Treatment + Improved, data=Arthritis)
round(prop.table(arth.tab, 1), 3)

## Improved
## Treatment None Some Marked
## Placebo 0.674 0.163 0.163
## Treated 0.317 0.171 0.512

More people given the Placebo show No improvement; more people Treated
show Marked improvement

13 / 64



2 by 2 tables

Independence: Example II
Frequencies, if Treatment and Improved were independent:

row.totals <- margin.table(arth.tab, 1)
col.totals <- margin.table(arth.tab, 2)
round(outer(row.totals, col.totals)/ sum(arth.tab), 1)

## Improved
## Treatment None Some Marked
## Placebo 21.5 7.2 14.3
## Treated 20.5 6.8 13.7

These are the expected frequencies, under independence.

chisq.test(arth.tab)

##
## Pearson's Chi-squared test
##
## data: arth.tab
## X-squared = 13.1, df = 2, p-value = 0.0015
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2 by 2 tables

Sampling models: Poisson, Binomial, Multinomial

Some subtle distinctions arise concerning whether the row and/or column
marginal totals of a contingency table are fixed by the sampling design or
random.

Poisson: each nij is regarded as an independent Poisson variate; nothing
fixed
Binomial: each row (or col) is regarded as an independent binomial
distribution, with one fixed margin (group total), other random (response)
Multinomial: only the total sample size, n++, is fixed; frequencies nij are
classified by A and B
These make a difference in how hypothesis tests are derived, justified
and explained.
Happily, for most inferential methods, the same results arise under
Poisson, binomial and multinomial sampling

Q: What is an appropriate sampling model for the UCB admissions data? For
the Hair-Eye color data? For the Mental impairment data?
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2 by 2 tables Odds ratio

Odds and odds ratios
For a binary response where π = Pr(success), the odds of a success is

odds =
π

1− π
.

Odds vary multiplicatively around 1 (“even odds”, π = 1
2 )

Taking logs, the log(odds), or logit varies symmetrically around 0,

logit(π) ≡ log(odds) = log
(

π

1− π

)
.

p <- c(.1, .25, .50, .75, .9)
odds <- p / (1-p)
logodds <- log(odds)
(odds.df <- data.frame(p, odds, logodds))

## p odds logodds
## 1 0.10 0.111 -2.2
## 2 0.25 0.333 -1.1
## 3 0.50 1.000 0.0
## 4 0.75 3.000 1.1
## 5 0.90 9.000 2.2
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2 by 2 tables Odds ratio

Log odds
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The logit transformation of
probability provides the basis for
logistic regression
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2 by 2 tables Odds ratio

Odds ratio

For two groups, with probabilities of success π1, π2, the odds ratio, θ, is the
ratio of the odds for the two groups:

odds ratio ≡ θ = odds1

odds2
=
π1/(1− π1)

π2/(1− π2)
=
π11/π12

π21/π22
=
π11π22

π12π21

θ = 1 =⇒ π1 = π2 =⇒ independence, no association
Same value when we interchange rows and columns (transpose)
Sample value, θ̂ obtained using nij .

More convenient to characterize association by log odds ratio, ψ = log(θ)
which is symmetric about 0:

log odds ratio ≡ ψ = log(θ) = log
[
π1/(1− π1)

π2/(1− π2)

]
= logit(π1)− logit(π2) .
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2 by 2 tables Odds ratio

Odds ratio: Inference and hypothesis tests
Symmetry of the distribution of the log odds ratio ψ = log(θ) makes it more
convenient to carry out tests independence as tests of H0 : ψ = log(θ) = 0
rather than H0 : θ = 1

z = log(θ̂)/SE(log(θ)) ∼ N(0,1)

oddsratio() in vcd uses log(θ) by default

oddsratio(UCB)

## log odds ratios for Gender and Admit
##
## [1] 0.61035

summary(oddsratio(UCB))

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## NA NA NA NA NA
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2 by 2 tables Odds ratio

Odds ratio: Inference and hypothesis tests
Or, in terms of odds ratios directly:

oddsratio(UCB, log=FALSE)

## odds ratios for Gender and Admit
##
## [1] 1.8411

confint(oddsratio(UCB, log=FALSE))

## 2.5 % 97.5 %
## NA NA

Males 1.84 times as likely to be admitted, with 95% CI of 1.62 ≤ θ ≤ 2.09.
chisq.test() just tests association:

chisq.test(UCB)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: UCB
## X-squared = 91.6, df = 1, p-value <2e-16
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2 by 2 tables Small n

Small sample size

Pearson χ2 and LR G2 tests are valid only when most expected
frequencies ≥ 5
Otherwise, use Fisher’s exact test or simulated p-values

Example

Is there a relation between high cholesterol in diet and heart disease?

fat <- matrix(c(6, 2, 4, 11), 2, 2)
dimnames(fat) <- list(cholesterol=c("low", "high"),

disease=c("no", "yes"))
fat

## disease
## cholesterol no yes
## low 6 4
## high 2 11
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2 by 2 tables Small n

Small sample size

The standard Pearson χ2 is not significant:

chisq.test(fat)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: fat
## X-squared = 3.19, df = 1, p-value = 0.074

We get a warning message:
In chisq.test(fat) : Chi-squared approximation may be incorrect
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2 by 2 tables Small n

Small sample size

Using Monte Carlo simulation to calculate the p-value:

chisq.test(fat, simulate=TRUE)

##
## Pearson's Chi-squared test with simulated p-value (based on
## 2000 replicates)
##
## data: fat
## X-squared = 4.96, df = NA, p-value = 0.034

This method repeatedly samples cell frequencies from tables with the same
margins, and calculates a χ2 for each.
The χ2 test is now significant
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2 by 2 tables Small n

Small sample size

Fisher’s exact test: calculates probability for all 2× 2 tables as or more
extreme than the data.

fisher.test(fat)

##
## Fisher's Exact Test for Count Data
##
## data: fat
## p-value = 0.039
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.86774 105.56694
## sample estimates:
## odds ratio
## 7.4019

The p-value is similar to the result using simulation.
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2 by 2 tables Fourfold plots

Visualizing: Fourfold plots

fourfold(UCB, std="ind.max") # maximum frequency
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Odds ratio: ratio of products of
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2 by 2 tables Fourfold plots

Visualizing: Fourfold plots

fourfold(UCB) #standardize both margins
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Better version:
Standardize to equal row, col
margins
Preserves the odds ratio
Confidence bands: significance of
odds ratio
If don’t overlap =⇒ θ 6= 1
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2 by 2 tables Fourfold plots

Cholesterol data

fourfold(fat)
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2 by 2 tables Stratified tables

Stratified 2× 2× k tables
The UC Berkeley data was collected for 6 graduate departments:

ftable(addmargins(UCBAdmissions, 3))

## Dept A B C D E F Sum
## Admit Gender
## Admitted Male 512 353 120 138 53 22 1198
## Female 89 17 202 131 94 24 557
## Rejected Male 313 207 205 279 138 351 1493
## Female 19 8 391 244 299 317 1278

Questions:
Does the overall association between gender and admission apply in
each department?
Do men and women apply equally to all departments?
Do departments differ in their rates of admission?

Stratified analysis tests association between a main factor and a response
within the levels of control variable(s)
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2 by 2 tables Stratified tables

Stratified 2× 2× k tables
Odds ratios by department:

summary(oddsratio(UCBAdmissions))

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## A -1.052 0.263 -4.00 6.2e-05 ***
## B -0.220 0.438 -0.50 0.62
## C 0.125 0.144 0.87 0.39
## D -0.082 0.150 -0.55 0.59
## E 0.200 0.200 1.00 0.32
## F -0.189 0.305 -0.62 0.54
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Odds ratio only significant, log(θ) 6= 0 for department A
For department A, men are only exp(−1.05) = .35 times as likely to be
admitted as women
The overall analysis ignoring department is misleading: falsely assumes
no associations of admission with department and gender with
department.
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2 by 2 tables Stratified tables

Stratified 2× 2× k tables
Fourfold plots by department (intense shading where significant):

fourfold(UCBAdmissions)
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2 by 2 tables Stratified tables

Stratified 2× 2× k tables
Or plot odds ratios directly:

plot(oddsratio(UCBAdmissions), cex=1.5, xlab="Department")

A B C D E F

−1.5

−1

−0.5

0

0.5

Department

LO
R

(A
dm

it 
/ G

en
de

r)

log odds ratios for Admit and Gender by Dept 

●

●

●

●

●

●

31 / 64



2 by 2 tables Stratified tables

Stratified tables: Homogeneity of odds ratios

Related questions:

Are the k odds ratios all equal, θ1 = θ2, . . . , θk ? (Woolf’s test:
woolf test())
(This is equivalent to the hypothesis of no three-way association)
If homogeneous, is the common odds ratio different from 1?
(Mantel-Haenszel test: mantelhaen.test())

woolf_test(UCBAdmissions)

##
## Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.)
##
## data: UCBAdmissions
## X-squared = 17.9, df = 5, p-value = 0.0031

Odds ratios differ across departments, so no sense in testing their common
value.
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2 by 2 tables Stratified tables

Exegesis: What happened at UC Berkeley?

Why do the results collapsed over department disagree with the results by
department?

Simpson’s paradox

Aggregate data are misleading because they falsely assume men and
women apply equally in each field.
But:

Large differences in admission rates across departments.
Men and women apply to these departments differentially.
Women applied in large numbers to departments with low admission rates.

Other graphical methods can show these effects.
(This ignores possibility of structural bias against women: differential
funding of fields to which women are more likely to apply.)
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2 by 2 tables Stratified tables

Mosaic matrix shows all pairwise associations:
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r by c tables

r × c tables: Overall analysis
Overall tests of association: assocstats(): Pearson chi-square and
LR G2

Strength of association: φ coefficient, contingency coefficient (C),
Cramer’s V (0 ≤ V ≤ 1)

φ2 =
χ2

n
, C =

√
χ2

n + χ2 , V =

√
χ2/n

min(r − 1, c − 1)

For a 2× 2 table, V = φ.
(If the data table was collapsed from a 3+ way table, the two-way
analysis may be misleading)

assocstats(HEC)

## Xˆ2 df P(> Xˆ2)
## Likelihood Ratio 146.44 9 0
## Pearson 138.29 9 0
##
## Phi-Coefficient : NA
## Contingency Coeff.: 0.435
## Cramer's V : 0.279
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r by c tables

r × c tables: Overall analysis and residuals
The Pearson X 2 and LR G2 statistics have the following forms:

X 2 =
∑

ij

(nij − m̂ij)
2

m̂ij
G2 =

∑
ij

nij log
(

nij

m̂ij

)
Expected (fitted) frequencies under independence: m̂ij = ni+n+j/n++

Each of these is a sum-of-squares of corresponding residuals
Degrees of freedom: df = (r − 1)(c − 1) — # independent residuals

Can get residuals from loglm() in MASS:

library(MASS)
mod <- loglm(˜Hair + Eye, data=HEC, fitted=TRUE)
mod

## Call:
## loglm(formula = ˜Hair + Eye, data = HEC, fitted = TRUE)
##
## Statistics:
## Xˆ2 df P(> Xˆ2)
## Likelihood Ratio 146.44 9 0
## Pearson 138.29 9 0
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Extract residuals:

res.P <- residuals(mod, type="pearson")
res.LR <- residuals(mod, type="deviance") # default
res.P

## Hair
## Eye Black Brown Red Blond
## Brown 4.398 1.233 -0.075 -5.851
## Blue -3.069 -1.949 -1.730 7.050
## Hazel -0.477 1.353 0.852 -2.228
## Green -1.954 -0.345 2.283 0.613

Demonstrate SSQ property:

unlist(mod[c("pearson", "deviance", "df")])

## pearson deviance df
## 138.29 146.44 9.00

sum(res.Pˆ2) # Pearson chisq

## [1] 138.29

sum(res.LRˆ2) # LR chisq

## [1] 146.44



r by c tables Plots

Plots for two-way tables: Bar plots
Bar plots are usually not very useful

HE <- margin.table(HairEyeColor, 2:1) # as in Table 4.2
barplot(HE, xlab="Hair color", ylab="Frequency")
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r by c tables Plots

Plots for two-way tables: Spine plots
Spine plots show the marginal proportions of one variable, and the conditional
proportions of the other. Independence: Cells align

spineplot(HE)
spineplot(t(HE))
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r by c tables Plots

Plots for two-way tables: Tile plots
Tile plots show a matrix of tiles. They can be scaled to allow for different types
of comparisons: cells, rows, cols.

tile(HE)
tile(HE, tile_type="width")
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r by c tables Sieve diagrams

Visualizing association: Sieve diagrams
Visual metaphor: count ∼ area

When row/col variables are independent, nij ≈ m̂ij ∼ ni+n+j
⇒ each cell can be represented as a rectangle, with area = height ×
width ∼ frequency, nij (under independence)
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Expected frequencies: Hair Eye Color Data
11.7                                     30.9                                     7.7                                      13.7                                     

17.0                                     44.9                                     11.2                                     20.0                                     

39.2                                     103.9                                    25.8                                     46.1                                     

40.1                                     106.3                                    26.4                                     47.2                                     

  64                                     

  93                                     

 215                                     

 220                                     
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This display shows expected
frequencies, assuming
independence, as # boxes within
each cell
The boxes are all of the same size
(equal density)
Real sieve diagrams use # boxes
= observed frequencies, nij
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r by c tables Sieve diagrams

Sieve diagrams
Height, width ∼ marginal frequencies, ni+, n+j
=⇒ Area ∼ expected frequency, m̂ij ∼ ni+n+j
Shading ∼ observed frequency, nij , color: sign(nij − m̂ij).
=⇒ Independence: Shown when density of shading is uniform.
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r by c tables Sieve diagrams

Sieve diagrams
Effect ordering: Reorder rows/cols to make the pattern coherent
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r by c tables Sieve diagrams

Sieve diagrams

Vision classification data for 7477 women: visual acuity in left, right eyes
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Unaided distant vision data

The obvious association is
apparent on the diagonal cells
A more subtle pattern appears on
the off-diagonal cells
Analysis methods for square
tables (later) allow testing
hypotheses of symmetry,
quasi-symmetry, etc.
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Ordered factors

Ordinal factors

The Pearson χ2 and LR G2 give tests of general association, with
(r − 1)(c − 1) df.

More powerful CMH tests

When either the row or column levels are ordered, more specific CMH
(Cochran–Mantel–Haentzel) tests which take order into account have
greater power to detect ordered relations.
This is similar to testing for linear trends in ANOVA
Essentially, these assign scores to the categories, and test for differences
in row / column means, or non-zero correlation.
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Ordered factors CMH tests

CMH tests for ordinal variables

Three types of CMH tests:

Non-zero correlation
Use when both row and column variables are ordinal.
CMH χ2 = (N − 1)r2, assigning scores (1, 2, 3, ...)
most powerful for linear association

Row/Col Mean Scores Differ
Use when only one variable is ordinal
Analogous to the Kruskal-Wallis non-parametric test (ANOVA on rank
scores)

General Association
Use when both row and column variables are nominal.
Similar to overall Pearson χ2 and Likelihood Ratio G2.

46 / 64



Ordered factors CMH tests

Sample CMH Profiles
Only general association:

| b1 | b2 | b3 | b4 | b5 | Total Mean
--------+-------+-------+-------+-------+-------+
a1 | 0 | 15 | 25 | 15 | 0 | 55 3.0
a2 | 5 | 20 | 5 | 20 | 5 | 55 3.0
a3 | 20 | 5 | 5 | 5 | 20 | 55 3.0

--------+-------+-------+-------+-------+-------+
Total 25 40 35 40 25 165

Output:
Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
--------------------------------------------------------------

1 Nonzero Correlation 1 0.000 1.000
2 Row Mean Scores Differ 2 0.000 1.000
3 General Association 8 91.797 0.000
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Ordered factors CMH tests

Sample CMH Profiles
Linear Association:

| b1 | b2 | b3 | b4 | b5 | Total Mean
--------+-------+-------+-------+-------+-------+
a1 | 2 | 5 | 8 | 8 | 8 | 31 3.48
a2 | 2 | 8 | 8 | 8 | 5 | 31 3.19
a3 | 5 | 8 | 8 | 8 | 2 | 31 2.81
a4 | 8 | 8 | 8 | 5 | 2 | 31 2.52

--------+-------+-------+-------+-------+-------+
Total 17 29 32 29 17 124

Output:
Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
--------------------------------------------------------------

1 Nonzero Correlation 1 10.639 0.001
2 Row Mean Scores Differ 3 10.676 0.014
3 General Association 12 13.400 0.341
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Ordered factors CMH tests

Sample CMH Profiles

Visualizing Association: Sieve diagrams
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Ordered factors CMH tests

Example: Mental health data

In R, these tests are provided by CMHtest() in the vcdExtra package
For the mental health data, both factors are ordinal
All tests are significant
The nonzero correlation test, with 1 df, has the smallest p-value, largest
χ2/df

mental.tab <- xtabs(Freq ˜ ses + mental, data=Mental)
CMHtest(mental.tab)

## Cochran-Mantel-Haenszel Statistics for ses by mental
##
## AltHypothesis Chisq Df Prob
## cor Nonzero correlation 37.2 1 1.09e-09
## rmeans Row mean scores differ 40.3 5 1.30e-07
## cmeans Col mean scores differ 40.7 3 7.70e-09
## general General association 46.0 15 5.40e-05
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Observer agreement

Observer Agreement

Inter-observer agreement often used as to assess reliability of a
subjective classification or assessment procedure

→ square table, Rater 1 x Rater 2
Levels: diagnostic categories (normal, mildly impaired, severely impaired)

Agreement vs. Association: Ratings can be strongly associated without
strong agreement
Marginal homogeneity: Different frequencies of category use by raters
affects measures of agreement
Measures of Agreement:

Intraclass correlation: ANOVA framework— multiple raters!
Cohen’s κ: compares the observed agreement, Po =

∑
pii , to agreement

expected by chance if the two observer’s ratings were independent,
Pc =

∑
pi+ p+i .

κ =
Po − Pc

1− Pc
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Observer agreement Cohen’s kappa

Cohen’s κ

Properties of Cohen’s κ:

perfect agreement: κ = 1
minimum κ may be < 0; lower bound depends on marginal totals
Unweighted κ: counts only diagonal cells (same category assigned by
both observers).
Weighted κ: allows partial credit for near agreement. (Makes sense only
when the categories are ordered .)

Weights:
Cicchetti-Alison (inverse integer spacing)
Fleiss-Cohen (inverse square spacing)

Integer Weights Fleiss-Cohen Weights
1 2/3 1/3 0 1 8/9 5/9 0

2/3 1 2/3 1/3 8/9 1 8/9 5/9
1/3 2/3 1 2/3 5/9 8/9 1 8/9
0 1/3 2/3 1 0 5/9 8/9 1
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Observer agreement Cohen’s kappa

Cohen’s κ: Example

The table below summarizes responses of 91 married couples to a
questionnaire item,

Sex is fun for me and my partner (a) Never or occasionally, (b) fairly
often, (c) very often, (d) almost always.

--------- Wife's Rating --------
Husband's Never Fairly Very Almost
Rating fun often Often always | SUM
--------------------------------------------------+-------
Never fun 7 7 2 3 | 19
Fairly often 2 8 3 7 | 20
Very often 1 5 4 9 | 19
Almost always 2 8 9 14 | 33
--------------------------------------------------+-------
SUM 12 28 18 33 | 91
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Observer agreement Cohen’s kappa

Cohen’s κ: Example

The Kappa() function in vcd calculates unweighted and weighted κ, using
equal-spacing weights by default.

data(SexualFun, package="vcd")
Kappa(SexualFun)

## value ASE z Pr(>|z|)
## Unweighted 0.129 0.0686 1.89 0.05939
## Weighted 0.237 0.0783 3.03 0.00244

Kappa(SexualFun, weights="Fleiss-Cohen")

## value ASE z Pr(>|z|)
## Unweighted 0.129 0.0686 1.89 0.059387
## Weighted 0.332 0.0973 3.41 0.000643

Unweighted κ is not significant, but both weighted versions are.
You can obtain confidence intervals with the confint() method
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Observer agreement Cohen’s kappa

Observer agreement: Multiple strata

When the individuals rated fall into multiple groups, one can test for:
Agreement within each group
Overall agreement (controlling for group)
Homogeneity: Equal agreement across groups

Example: Diagnostic Classification of MS patients

Patients in Winnipeg and New Orleans were each classified by a neurologist
in each city

Winnipeg patients New Orleans patients
NO rater:

Cert Prob Pos Doubt Cert Prob Pos Doubt
-------------------- --------------------

Winnipeg rater:
Certain MS 38 5 0 1 5 3 0 0
Probable 33 11 3 0 3 11 4 0
Possible 10 14 5 6 2 13 3 4
Doubtful MS 3 7 3 10 1 2 4 14
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Observer agreement Cohen’s kappa

Observer agreement: Multiple strata

Here, simply assess agreement between the two raters in each stratum
separately

data(MSPatients, package="vcd")
Kappa(MSPatients[,,1])

## value ASE z Pr(>|z|)
## Unweighted 0.208 0.0505 4.12 3.77e-05
## Weighted 0.380 0.0517 7.35 1.99e-13

Kappa(MSPatients[,,2])

## value ASE z Pr(>|z|)
## Unweighted 0.297 0.0785 3.78 1.59e-04
## Weighted 0.477 0.0730 6.54 6.35e-11

The irr package (inter-rater reliability) provides ICC and other measures, and
handles the case of k > 2 raters.
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Observer agreement Agreement Chart

Bangdiwala’s Observer Agreement Chart

The observer agreement chart Bangdiwala (1987) provides
a simple graphic representation of the strength of agreement, and
a measure of strength of agreement with an intuitive interpretation.

Construction:
n × n square, n=total sample size
Black squares, each of size nii × nii → observed agreement
Positioned within larger rectangles, each of size ni+ × n+i → maximum
possible agreement
⇒ visual impression of the strength of agreement is B:

B =
area of dark squares

area of rectangles
=

∑k
i n2

ii∑k
i ni+ n+i

⇒ Perfect agreement: B = 1, all rectangles are completely filled.
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Observer agreement Agreement Chart

Weighted Agreement Chart: Partial agreement
Partial agreement: include weighted contribution from off-diagonal cells, b
steps from the main diagonal, using weights 1 > w1 > w2 > · · · .

ni−b,i
...

ni,i−b · · · ni,i · · · ni,i+b
...

ni−b,i

w2
w1

w2 w1 1 w1 w2
w1
w2

Add shaded rectangles, size ∼ sum of frequencies, Abi , within b steps of
main diagonal
⇒ weighted measure of agreement,

Bw =
weighted sum of agreement

area of rectangles
= 1−

∑k
i [ni+n+i − n2

ii −
∑q

b=1 wbAbi ]∑k
i ni+ n+i
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Observer agreement Agreement Chart

Husbands and wives: B = 0.146, Bw = 0.498

agreementplot(SexualFun, main="Unweighted", weights=1)
agreementplot(SexualFun, main="Weighted")
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Observer agreement Marginal homogeneity

Marginal homogeneity and Observer bias
Different raters may consistently use higher or lower response categories
Test– marginal homogeneity: H0 : ni+ = n+i
Shows as departures of the squares from the diagonal line
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Looking ahead

Looking ahead

Loglinear models

Loglinear models generalize the Pearson χ2 and LR G2 tests of association to
3-way and larger tables.

Allows a range of models from mutual independence ([A][B][C]) to the
saturated model ([ABC])
Intermediate models address questions of conditional independence,
controlling for some factors
Can test associations in 2-way, 3-way terms analogously to tests of
interactions in ANOVA

Example: UC Berkeley data

Mutual independence: [Admit] [Gender] [Dept]
Joint independence: [Admit] [Gender*Dept]
Conditional independence: [Admit*Dept] [Admit*Gender]: A specific test
for absence of gender bias, controlling for department
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Looking ahead

Looking ahead

Mosaic displays

Mosaic plots provide visualizations of associations in 2+ way tables.
Tiles: ∼ frequency
Fit loglinear model
Shading: ∼ residuals
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Looking ahead

Looking ahead
Correspondence analysis

Account for max. % of χ2 in few (2-3) dimensions
Find scores for row and column categories
Plot of row and column scores shows associations
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Looking ahead
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