Two-way tables: Independence and association

Michael Friendly

Psych 6136

September 27, 2017

Two-way tables: Overview

Two-way contingency tables are a convenient and compact way to represent a data set cross-classified by two discrete variables, *A* and *B*.

Special cases:

- 2 × 2 tables: two binary factors (e.g., gender, admitted?, died?, ...)
- $2 \times 2 \times k$ tables: a collection of $2 \times 2s$, stratified by another variable
- $r \times c$ tables
- $r \times c$ tables, with ordered factors

Questions:

- Are A and B statistically independent? (vs. associated)
- If associated, what is the strength of association?
- Measures: 2 × 2— odds ratio; r × c— Pearson χ², LR G²
- How to understand the pattern or nature of association?

Two-way tables: Examples

 2×2 table: Admissions to graduate programs at U. C. Berkeley

Table: Admissions to Berkeley	/ graduate	programs
-------------------------------	------------	----------

	Admitted	Rejected	Total	% Admit	Odds(Admit)
Males	1198	1493	2691	44.52	0.802
Females	557	1278	1835	30.35	0.437
Total	1755	2771	4526	38.78	0.633

Males were nearly twice as likely to be admitted.

- Association between gender and admission?
- If so, is this evidence for gender bias?
- How do characterise strength of association?
- How to test for significance?
- How to visualize?

2×2 tables: UCB data In R, the data is contained in <code>UCBAdmissions</code>, a $2\times 2\times 6$ table for 6

departments. Collapse over department:

```
data(UCBAdmissions)
UCB <- margin.table(UCBAdmissions, 2:1)
UCB</pre>
```

##	1	Admit	
##	Gender	Admitted	Rejected
##	Male	1198	1493
##	Female	557	1278

Association between gender and admit can be measured by the odds ratio, the ratio of odds of admission for males vs. females. Details later.

```
oddsratio(UCB, log=FALSE)
## odds ratios for Gender and Admit
##
## [1] 1.8411
confint(oddsratio(UCB, log=FALSE))
## 2.5 % 97.5 %
## NA NA
```


YES, ON THE SURFACE IT WOULD APPEAR TO BE SEX-BIAS BUT LET US ASK THE FOLLOWING QUESTIONS ... "

- How to analyse these data?
- How to visualize & interpret the results?
- Does it matter that we collapsed over Department?

Two-way tables: Examples

 $r \times c$ table: Hair color and eye color— Students in a large statistics class.

Eye					
Color	Black	Brown	Red	Blond	Total
Brown	68	119	26	7	220
Blue	20	84	17	94	215
Hazel	15	54	14	10	93
Green	5	29	14	16	64
Total	108	286	71	127	592

Table: Hair-color eye-color data

- Association between hair color and eye color?
- How do characterise strength of association?
- How to test for significance?
- How to visualize?
- How to interpret the pattern of association?

$r \times c$ tables: HEC data

In R, the data is contained in HairEyeColor, a $4\times4\times2$ table for males and females. Collapse over gender:

```
data(HairEyeColor)
HEC <- margin.table(HairEyeColor, 2:1)</pre>
```

Association between hair and eye color can be tested by the standard Pearson χ^2 test. Details later.

```
chisq.test(HEC)
##
## Pearson's Chi-squared test
##
## data: HEC
## X-squared = 138, df = 9, p-value <2e-16</pre>
```

Two-way tables: Examples

 $r \times c$ table with ordered categories: Mental health and parents' SES

	Mental impairment										
SES	Well	Mild	Moderate	Impaired							
1	64	94	58	46							
2	57	94	54	40							
3	57	105	65	60							
4	72	141	77	94							
5	36	97	54	78							
6	21	71	54	71							

Table: Mental impairment and parents' SES

- Mental impairment is the response, SES is the predictor
- How do characterise strength of association?
- How to interpret the pattern of association?
- How to take ordinal nature of the variables into account?

ordered $r \times c$ tables: Mental data I

In R, the data is contained in Mental in vcdExtra, a frequency data frame.

Convert to a contingency table using **xtabs**(), and test association:

```
mental.tab <- xtabs(Freq ~ ses + mental, data=Mental)
chisq.test(mental.tab)
##
## Pearson's Chi-squared test
##
## data: mental.tab
## X-squared = 46, df = 15, p-value = 5.3e-05</pre>
```

ordered $r \times c$ tables: Mental data II

For ordinal factors, more powerful tests are available with Cochran-Mantel-Haenszel tests:

```
CMHtest (mental.tab)

## Cochran-Mantel-Haenszel Statistics for ses by mental

## AltHypothesis Chisq Df Prob

## cor Nonzero correlation 37.2 1 1.09e-09

## rmeans Row mean scores differ 40.3 5 1.30e-07

## cmeans Col mean scores differ 40.7 3 7.70e-09

## general General association 46.0 15 5.40e-05
```

Details later, but χ^2/df gives a useful comparison.

##	cor	rmeans	cmeans	general
# #	37.16	8.06	13.56	3.06

2 by 2 tables: Notation

	Col	umn					
Bow	1	2	Total	Gender	Admit	Reject	Tot
1	1	-	rotai	Male	1198	1493	2691
	n ₁₁	n ₁₂	<i>n</i> ₁₊	Female	557	1278	1835
2	n ₂₁	n ₂₂	n ₂₊	Total	1755	2771	1526
Total	<i>n</i> ₊₁	n_{+2}	n ₊₊	Total	1755	2771	-520

- $N = \{n_{ij}\}$ are the observed frequencies.
- + subscript means sum over: row sums: n_{i+}; col sums: n_{+i}; total sample size: n₊₊ ≡ n
- Similar notation for:
 - Cell joint population probabilities: π_{ij} ; also use $\pi_1 = \pi_{1+}$ and $\pi_2 = \pi_{2+}$
 - Population marginal probabilities: π_{i+} (rows), π_{+j} (cols)
 - Sample proportions: use $p_{ij} = n_{ij}/n$, etc.

Independence

Two categorical variables, A and B are statistically independent when:

• The conditional distributions of B given A are the same for all levels of A

$$\pi_{1j}=\pi_{2j}=\cdots=\pi_{rj}$$

Joint cell probabilities are the product of the marginal probabilities

$$\pi_{ij} = \pi_{i+}\pi_{+j}$$

For 2×2 tables, this gives rise to tests and measures based on

- Difference in row marginal probabilities: test $H_0: \pi_1 = \pi_2$
- Odds ratio
- Standard χ^2 tests also apply for large *n*
- Fisher's exact test or simulation required in small samples.

Independence: Example I

In the Arthritis data, people are classified by Sex, Treatment and Improved. Are Treatment and Improved independent?

- $\bullet \rightarrow$ row proportions are the same for Treated and Placebo
- \rightarrow cell frequencies \sim row total \times column total

```
data(Arthritis, package="vcd")
arth.tab <- xtabs( ~ Treatment + Improved, data=Arthritis)
round(prop.table(arth.tab, 1), 3)
## Improved
## Treatment None Some Marked
## Placebo 0.674 0.163 0.163
## Treated 0.317 0.171 0.512</pre>
```

More people given the Placebo show No improvement; more people Treated show Marked improvement

Independence: Example II

Frequencies, if **Treatment** and **Improved** were independent:

```
row.totals <- margin.table(arth.tab, 1)
col.totals <- margin.table(arth.tab, 2)
round(outer(row.totals, col.totals) / sum(arth.tab), 1)
## Improved
## Treatment None Some Marked
## Placebo 21.5 7.2 14.3
## Treated 20.5 6.8 13.7</pre>
```

These are the expected frequencies, under independence.

```
chisq.test(arth.tab)
##
## Pearson's Chi-squared test
##
## data: arth.tab
## X-squared = 13.1, df = 2, p-value = 0.0015
```

Sampling models: Poisson, Binomial, Multinomial

Some subtle distinctions arise concerning whether the row and/or column marginal totals of a contingency table are fixed by the sampling design or random.

- Poisson: each *n_{ij}* is regarded as an independent Poisson variate; nothing fixed
- Binomial: each row (or col) is regarded as an independent binomial distribution, with one fixed margin (group total), other random (response)
- Multinomial: only the total sample size, *n*₊₊, is fixed; frequencies *n*_{ij} are classified by *A* and *B*
- These make a difference in how hypothesis tests are derived, justified and explained.
- Happily, for most inferential methods, the same results arise under Poisson, binomial and multinomial sampling
- Q: What is an appropriate sampling model for the UCB admissions data? For the Hair-Eye color data? For the Mental impairment data?

Odds and odds ratios

For a binary response where $\pi = Pr(success)$, the *odds* of a success is

odds =
$$\frac{\pi}{1-\pi}$$

- Odds vary multiplicatively around 1 ("even odds", $\pi = \frac{1}{2}$)
- Taking logs, the log(odds), or *logit* varies symmetrically around 0,

$$logit(\pi) \equiv log(odds) = log\left(\frac{\pi}{1-\pi}\right)$$

Log odds

Log odds:

- Symmetric around $\pi = \frac{1}{2}$: logit(π) = - logit(1 - π)
- Fairly linear in the middle, $0.2 \le \pi \le 0.8$
- The logit transformation of probability provides the basis for logistic regression

Odds ratio

For two groups, with probabilities of success π_1, π_2 , the *odds ratio*, θ , is the ratio of the odds for the two groups:

odds ratio
$$\equiv \theta = \frac{\text{odds}_1}{\text{odds}_2} = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} = \frac{\pi_{11}/\pi_{12}}{\pi_{21}/\pi_{22}} = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}}$$

• $\theta = 1 \implies \pi_1 = \pi_2 \implies$ independence, no association

- Same value when we interchange rows and columns (transpose)
- Sample value, $\hat{\theta}$ obtained using n_{ij} .

More convenient to characterize association by *log odds ratio*, $\psi = \log(\theta)$ which is symmetric about 0:

log odds ratio
$$\equiv \psi = \log(\theta) = \log\left[\frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}\right] = \operatorname{logit}(\pi_1) - \operatorname{logit}(\pi_2)$$
.

Odds ratio: Inference and hypothesis tests

Symmetry of the distribution of the log odds ratio $\psi = \log(\theta)$ makes it more convenient to carry out tests independence as tests of $H_0: \psi = \log(\theta) = 0$ rather than $H_0: \theta = 1$

• $z = \log(\hat{\theta}) / SE(\log(\theta)) \sim N(0, 1)$

oddsratio() in vcd uses $log(\theta)$ by default

```
oddsratio(UCB)
   log odds ratios for Gender and Admit
##
##
##
  [1] 0.61035
summary(oddsratio(UCB))
##
   z test of coefficients:
##
      Estimate Std. Error z value Pr(>|z|)
##
   NA
             NA
                        NA
                                 NA
                                           NA
```

and the second design of the second

Odds ratio: Inference and hypothesis tests Or, in terms of odds ratios directly:

```
oddsratio(UCB, log=FALSE)
## odds ratios for Gender and Admit
##
## [1] 1.8411
confint(oddsratio(UCB, log=FALSE))
## 2.5 % 97.5 %
## NA NA
```

Males 1.84 times as likely to be admitted, with 95% CI of $1.62 \le \theta \le 2.09$. chisq.test () just tests association:

```
chisq.test(UCB)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: UCB
## X-squared = 91.6, df = 1, p-value <2e-16</pre>
```

- Pearson χ^2 and LR G^2 tests are valid only when most expected frequencies ≥ 5
- Otherwise, use Fisher's exact test or simulated *p*-values

Example

Is there a relation between high cholesterol in diet and heart disease?

```
The standard Pearson \chi^2 is not significant:
```

```
chisq.test(fat)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: fat
## X-squared = 3.19, df = 1, p-value = 0.074
```

We get a warning message:

In chisq.test(fat) : Chi-squared approximation may be incorrect

Using Monte Carlo simulation to calculate the *p*-value:

```
chisq.test(fat, simulate=TRUE)
##
   Pearson's Chi-squared test with simulated p-value (based on
##
##
    2000 replicates)
##
##
  data: fat
## X-squared = 4.96, df = NA, p-value = 0.034
```

This method repeatedly samples cell frequencies from tables with the same margins, and calculates a χ^2 for each. The χ^2 test is now significant

Fisher's exact test: calculates probability for all 2 \times 2 tables as or more extreme than the data.

fisher.test(fat)

```
##
   Fisher's Exact Test for Count Data
##
##
##
  data: fat
  p-value = 0.039
##
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
      0.86774 105.56694
##
## sample estimates:
## odds ratio
##
    7.4019
```

The *p*-value is similar to the result using simulation.

Visualizing: Fourfold plots

fourfold(UCB, std="ind.max") # maximum frequency

Gender: Male

Friendly (1994a):

- Fourfold display: area \sim frequency, n_{ii}
- Color: blue (+), red(-)
- This version: Unstandardized
- Odds ratio: ratio of products of blue / red cells

Visualizing: Fourfold plots

#standardize both margins fourfold(UCB)

Gender: Male

Better version:

- Standardize to equal row, col margins
- Preserves the odds ratio
- Confidence bands: significance of odds ratio
- If don't overlap $\implies \theta \neq 1$

Cholesterol data

fourfold(fat)

Stratified $2 \times 2 \times k$ tables

The UC Berkeley data was collected for 6 graduate departments:

ftable(addmargins(UCBAdmissions, 3))

##			Dept	A	В	С	D	Е	F	Sum
##	Admit	Gender								
##	Admitted	Male		512	353	120	138	53	22	1198
##		Female		89	17	202	131	94	24	557
##	Rejected	Male		313	207	205	279	138	351	1493
##		Female		19	8	391	244	299	317	1278

Questions:

- Does the overall association between gender and admission apply in each department?
- Do men and women apply equally to all departments?
- Do departments differ in their rates of admission?

Stratified analysis tests association between a main factor and a response within the levels of control variable(s)

Stratified $2 \times 2 \times k$ tables Odds ratios by department:

summary(oddsratio(UCBAdmissions))

```
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## A -1.052 0.263 -4.00 6.2e-05 ***
## B -0.220 0.438 -0.50 0.62
## C 0.125 0.144 0.87 0.39
## D -0.082 0.150 -0.55 0.59
## E 0.200 0.200 1.00 0.32
## F -0.189 0.305 -0.62 0.54
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Odds ratio only significant, $log(\theta) \neq 0$ for department A
- For department A, men are only exp(-1.05) = .35 times as likely to be admitted as women
- The overall analysis ignoring department is misleading: falsely assumes no associations of admission with department and gender with department.

Stratified $2 \times 2 \times k$ tables

Fourfold plots by department (intense shading where significant):

fourfold(UCBAdmissions)

Stratified $2 \times 2 \times k$ tables

Or plot odds ratios directly:

plot(oddsratio(UCBAdmissions), cex=1.5, xlab="Department")

0.5 LOR (Admit / Gender) 0 5'0 -1 -1.5 А в С D Е F Department

log odds ratios for Admit and Gender by Dept

Stratified tables: Homogeneity of odds ratios

Related questions:

- Are the k odds ratios all equal, θ₁ = θ₂,..., θ_k? (Woolf's test: woolf_test())
- (This is equivalent to the hypothesis of no three-way association)
- If homogeneous, is the common odds ratio different from 1? (Mantel-Haenszel test: mantelhaen.test())

```
woolf_test(UCBAdmissions)
##
## Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.)
##
## data: UCBAdmissions
## X-squared = 17.9, df = 5, p-value = 0.0031
```

Odds ratios differ across departments, so no sense in testing their common value.

Exegesis: What happened at UC Berkeley?

Why do the results *collapsed over* department disagree with the results *by* department?

Simpson's paradox

- Aggregate data are misleading because they falsely assume men and women apply *equally* in each field.
- But:
 - Large differences in admission rates across departments.
 - Men and women apply to these departments differentially.
 - Women applied in large numbers to departments with low admission rates.
- Other graphical methods can show these effects.
- (This ignores possibility of *structural bias* against women: differential funding of fields to which women are more likely to apply.)

Mosaic matrix shows all pairwise associations:

$r \times c$ tables: Overall analysis

- **Overall tests** of association: **assocstats**(): Pearson chi-square and LR *G*²
- Strength of association: φ coefficient, contingency coefficient (C), Cramer's V (0 ≤ V ≤ 1)

$$\phi^2 = rac{\chi^2}{n}$$
, $C = \sqrt{rac{\chi^2}{n + \chi^2}}$, $V = \sqrt{rac{\chi^2/n}{\min(r - 1, c - 1)}}$

- For a 2 \times 2 table, $V = \phi$.
- (If the data table was collapsed from a 3+ way table, the two-way analysis may be misleading)

```
assocstats(HEC)
```

```
## X^2 df P(> X^2)
## Likelihood Ratio 146.44 9 0
## Pearson 138.29 9 0
##
## Phi-Coefficient : NA
## Contingency Coeff.: 0.435
## Cramer's V : 0.279
```

$r \times c$ tables: Overall analysis and residuals

• The Pearson X² and LR G² statistics have the following forms:

$$X^2 = \sum_{ij} \frac{(n_{ij} - \widehat{m}_{ij})^2}{\widehat{m}_{ij}} \qquad G^2 = \sum_{ij} n_{ij} \log\left(\frac{n_{ij}}{\widehat{m}_{ij}}\right)$$

• Expected (fitted) frequencies under independence: $\hat{m}_{ij} = n_{i+}n_{+j}/n_{++}$

- Each of these is a sum-of-squares of corresponding residuals
- Degrees of freedom: df = (r 1)(c 1) # independent residuals

Can get residuals from loglm() in MASS:

```
library(MASS)
mod <- loglm(~Hair + Eye, data=HEC, fitted=TRUE)
mod
## Call:
## loglm(formula = ~Hair + Eye, data = HEC, fitted = TRUE)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 146.44 9 0
## Pearson 138.29 9 0
```

Extract residuals:

```
res.P <- residuals(mod, type="pearson")
res.LR <- residuals(mod, type="deviance")  # default
res.P
## Hair
## Eye Black Brown Red Blond
## Brown 4.398 1.233 -0.075 -5.851
## Blue -3.069 -1.949 -1.730 7.050
## Hazel -0.477 1.353 0.852 -2.228
## Green -1.954 -0.345 2.283 0.613</pre>
```

Demonstrate SSQ property:

<pre>unlist(mod[c("pearson")</pre>	", "deviance",	"df")]
## pearson deviance ## 138.29 146.44	df 9.00	
<pre>sum(res.P^2) # I</pre>	Pearson chisq	
## [1] 138.29		
<pre>sum(res.LR²) # 1</pre>	LR chisq	
## [1] 146.44		

Plots for two-way tables: Bar plots

Bar plots are usually not very useful

HE <- margin.table(HairEyeColor, 2:1) # as in Table 4.2 barplot(HE, xlab="Hair color", ylab="Frequency")

Hair color

Plots for two-way tables: Spine plots Spine plots show the marginal proportions of one variable, and the conditional proportions of the other. Independence: Cells align

spineplot(HE) spineplot(t(HE))

Plots for two-way tables: Tile plots Tile plots show a matrix of tiles. They can be scaled to allow for different types of comparisons: cells, rows, cols.

tile(HE) tile(HE, tile_type="width")

Visualizing association: Sieve diagrams

Visual metaphor: count \sim area

- When row/col variables are independent, $n_{ij} \approx \hat{m}_{ij} \sim n_{i+} n_{+j}$
- ⇒ each cell can be represented as a rectangle, with area = height × width ~ frequency, n_{ij} (under independence)

Green	11.7	30.0	77	13.7	64
Green		50.5	······		04
Hazel	17.0	44.9	11.2	20.0	93
Blue	39.2	103.9	25.8	46.1	215
Eye					
Brown	40.1	106.3	26.4	47.2	220
	108 Black	286 Brown Hair Color	71 Red	127 Blond	592

Expected frequencies: Hair Eve Color Data

This display shows expected frequencies, assuming independence, as # boxes within each cell

- The boxes are all of the same size (equal density)
- Real sieve diagrams use # boxes = observed frequencies, n_{ij}

41/64

Sieve diagrams

- Height, width ~ marginal frequencies, n_{i+}, n_{+j}
- \implies Area \sim expected frequency, $\hat{m}_{ij} \sim n_{i+} n_{+j}$
- Shading ~ observed frequency, n_{ij} , color: sign $(n_{ij} \hat{m}_{ij})$.
- \implies Independence: Shown when density of shading is uniform.

Sieve diagrams Effect ordering: Reorder rows/cols to make the pattern coherent

Sieve diagrams

Vision classification data for 7477 women: visual acuity in left, right eyes

Unaided distant vision data

- The obvious association is apparent on the diagonal cells
- A more subtle pattern appears on the off-diagonal cells
- Analysis methods for square tables (later) allow testing hypotheses of symmetry, quasi-symmetry, etc.

Ordinal factors

The Pearson χ^2 and LR G^2 give tests of general association, with (r-1)(c-1) df.

More powerful CMH tests

- When either the row or column levels are ordered, more specific CMH (Cochran–Mantel–Haentzel) tests which take order into account have greater power to detect ordered relations.
- This is similar to testing for linear trends in ANOVA
- Essentially, these assign scores to the categories, and test for differences in row / column means, or non-zero correlation.

CMH tests for ordinal variables

Three types of CMH tests:

Non-zero correlation

- Use when *both* row and column variables are ordinal.
- CMH $\chi^2 = (N 1)r^2$, assigning scores (1, 2, 3, ...)
- most powerful for *linear* association

Row/Col Mean Scores Differ

- Use when only one variable is ordinal
- Analogous to the Kruskal-Wallis non-parametric test (ANOVA on rank scores)

General Association

- Use when both row and column variables are nominal.
- Similar to overall Pearson χ^2 and Likelihood Ratio G^2 .

Sample CMH Profiles

Only general association:

		b1		b2			b3	1	b4		b5		Total	Mean
a1 a2 a3	-+ 	(ق 2(+) 5)		15 20 5		25 5 5		15 20 5	-+ 	0 5 20	-+ 	55 55 55	3.0 3.0 3.0
Total	-+	25	+ 5		40	-+-	35	-+	40	-+	25	-+	165	

Output:

Cochran-M	antel-Haenszel Statistics	(Based	on Table	Scores)
Statistic	Alternative Hypothesis	DF	Value	Prob
1 2 3	Nonzero Correlation Row Mean Scores Differ General Association	1 2 8	0.000 0.000 91.797	1.000 1.000 0.000

Sample CMH Profiles

Linear Association:

	b	1	b2		b	3	b4		b5	I	Total	Mean
a1 a2	-+ 	2 2 2	+ 	 5 8	-+ 	 8 8	+ 	8 8	+ 	+ 8 5	31 31	3.48 3.19
a3	1	5	1	8		8		8		2	31	2.81
a4 	 _+	8		8		8		5	 +	2	31	2.52
Total	I	17	1	29	1	32		29	1	17	124	

Output:

Cochran-M	Mantel-Haenszel Statistics	(Based	on Table	Scores)
Statistic	Alternative Hypothesis	DF	Value	Prob
1 2	Nonzero Correlation Row Mean Scores Differ	1 3	10.639 10.676	0.001 0.014
3	General Association	12	13.400	0.341

Sample CMH Profiles

Visualizing Association: Sieve diagrams

Example: Mental health data

- In R, these tests are provided by CMHtest () in the vcdExtra package
- For the mental health data, both factors are ordinal
- All tests are significant
- The nonzero correlation test, with 1 df, has the smallest *p*-value, largest χ^2/df

```
mental.tab <- xtabs(Freg ~ ses + mental, data=Mental)</pre>
CMHtest (mental.tab)
  Cochran-Mantel-Haenszel Statistics for ses by mental
##
##
##
                   AltHypothesis Chisq Df Prob
             Nonzero correlation 37.2 1 1.09e-09
##
  cor
   rmeans Row mean scores differ 40.3 5 1.30e-07
##
   cmeans Col mean scores differ 40.7 3 7.70e-09
##
##
  general General association 46.0 15 5.40e-05
```

Observer Agreement

- Inter-observer agreement often used as to assess reliability of a subjective classification or assessment procedure
 - $\bullet \ \rightarrow$ square table, Rater 1 x Rater 2
 - Levels: diagnostic categories (normal, mildly impaired, severely impaired)
- Agreement vs. Association: Ratings can be strongly associated without strong agreement
- Marginal homogeneity: Different frequencies of category use by raters affects measures of agreement

Measures of Agreement:

- Intraclass correlation: ANOVA framework— multiple raters!
- Cohen's κ : compares the observed agreement, $\dot{P}_o = \sum p_{ii}$, to agreement expected by chance if the two observer's ratings were independent, $P_c = \sum p_{i+} p_{+i}$.

$$\kappa = \frac{P_o - P_c}{1 - P_c}$$

Cohen's κ

Properties of Cohen's κ :

- perfect agreement: $\kappa = 1$
- minimum κ may be < 0; lower bound depends on marginal totals
- Unweighted κ: counts only diagonal cells (same category assigned by both observers).
- Weighted κ: allows partial credit for near agreement. (Makes sense only when the categories are *ordered*.)

Weights:

- Cicchetti-Alison (inverse integer spacing)
- Fleiss-Cohen (inverse square spacing)

	Integer	Weights		Fl	eiss-Cohe	n Weigh	ts	
1	2/3	1/3	0	1	8/9	5/9	0	
2/3	1	2/3	1/3	8/9	1	8/9	5/9	
1/3	2/3	1	2/3	5/9	8/9	1	8/9	
0	1/3	2/3	1	0	5/9	8/9	1	

Cohen's κ : Example

The table below summarizes responses of 91 married couples to a questionnaire item,

Sex is fun for me and my partner (a) Never or occasionally, (b) fairly often, (c) very often, (d) almost always.

Husband's Rating	Never fun	Wife's Fairly often	Rating Very Often	Almost always	SUM
Never fun Fairly often Very often Almost always	7 2 1 2	7 8 5 8	2 3 4 9	3 7 9 14	19 20 19 33
SUM	12	28	18	33	91

Cohen's κ : Example

The **Kappa** () function in vcd calculates unweighted and weighted κ , using equal-spacing weights by default.

```
data(SexualFun, package="vcd")
Kappa(SexualFun)
## value ASE z Pr(>|z|)
## Unweighted 0.129 0.0686 1.89 0.05939
## Weighted 0.237 0.0783 3.03 0.00244
Kappa(SexualFun, weights="Fleiss-Cohen")
## value ASE z Pr(>|z|)
## Unweighted 0.129 0.0686 1.89 0.059387
## Weighted 0.332 0.0973 3.41 0.000643
```

Unweighted κ is not significant, but both weighted versions are. You can obtain confidence intervals with the **confint** () method

Observer agreement: Multiple strata

When the individuals rated fall into multiple groups, one can test for:

- Agreement within each group
- Overall agreement (controlling for group)
- Homogeneity: Equal agreement across groups

Example: Diagnostic Classification of MS patients

Patients in Winnipeg and New Orleans were each classified by a neurologist in each city

NO rator.	Winnipeg patients					New Orleans patients			
NO TALET:	Cert	Prob	Pos	Doubt		Cert	Prob	Pos	Doubt
Winnipeg rater:									
Certain MS	38	5	0	1		5	3	0	0
Probable	33	11	3	0		3	11	4	0
Possible	10	14	5	6		2	13	3	4
Doubtful MS	3	7	3	10		1	2	4	14

Observer agreement: Multiple strata

Here, simply assess agreement between the two raters in each stratum separately

```
data(MSPatients, package="vcd")
Kappa(MSPatients[,,1])
## value ASE z Pr(>|z|)
## Unweighted 0.208 0.0505 4.12 3.77e-05
## Weighted 0.380 0.0517 7.35 1.99e-13
Kappa(MSPatients[,,2])
## value ASE z Pr(>|z|)
## Unweighted 0.297 0.0785 3.78 1.59e-04
## Weighted 0.477 0.0730 6.54 6.35e-11
```

The irr package (inter-rater reliability) provides ICC and other measures, and handles the case of k > 2 raters.

Bangdiwala's Observer Agreement Chart

The observer agreement chart Bangdiwala (1987) provides

- a simple graphic representation of the strength of agreement, and
- a measure of strength of agreement with an intuitive interpretation.

Construction:

- *n* × *n* square, *n*=total sample size
- Black squares, each of size $n_{ii} \times n_{ii} \rightarrow$ observed agreement
- Positioned within larger rectangles, each of size n_{i+} × n_{+i} → maximum possible agreement
- \Rightarrow visual impression of the strength of agreement is *B*:

$$B = \frac{\text{area of dark squares}}{\text{area of rectangles}} = \frac{\sum_{i=1}^{k} n_{ii}^2}{\sum_{i=1}^{k} n_{i+1} n_{+i}}$$

• \Rightarrow Perfect agreement: B = 1, all rectangles are completely filled.

Weighted Agreement Chart: Partial agreement

Partial agreement: include weighted contribution from off-diagonal cells, *b* steps from the main diagonal, using weights $1 > w_1 > w_2 > \cdots$.

- Add shaded rectangles, size ~ sum of frequencies, A_{bi}, within b steps of main diagonal
- \Rightarrow weighted measure of agreement,

$$B^{w} = \frac{\text{weighted sum of agreement}}{\text{area of rectangles}} = 1 - \frac{\sum_{i}^{k} [n_{i+}n_{+i} - n_{ii}^{2} - \sum_{b=1}^{q} w_{b}A_{bi}]}{\sum_{i}^{k} n_{i+} n_{+i}}$$

Husbands and wives: $B = 0.146, B^w = 0.498$

agreementplot(SexualFun, main="Unweighted", weights=1)
agreementplot(SexualFun, main="Weighted")

Marginal homogeneity and Observer bias

- Different raters may consistently use higher or lower response categories
- Test– marginal homogeneity: $H_0 : n_{i+} = n_{+i}$
- Shows as departures of the squares from the diagonal line

• Winnipeg neurologist tends to use more severe categories

Looking ahead

Loglinear models

Loglinear models generalize the Pearson χ^2 and LR G^2 tests of association to 3-way and larger tables.

- Allows a range of models from mutual independence ([A][B][C]) to the saturated model ([ABC])
- Intermediate models address questions of conditional independence, controlling for some factors
- Can test associations in 2-way, 3-way terms analogously to tests of interactions in ANOVA

Example: UC Berkeley data

- Mutual independence: [Admit] [Gender] [Dept]
- Joint independence: [Admit] [Gender*Dept]
- Conditional independence: [Admit*Dept] [Admit*Gender]: A specific test for absence of gender bias, controlling for department

Looking ahead

Mosaic displays

Mosaic plots provide visualizations of associations in 2+ way tables.

- Tiles: ~ frequency
- Fit loglinear model
- Shading: ~ residuals

Looking ahead

Correspondence analysis

- Account for max. % of χ^2 in few (2-3) dimensions
- Find scores for row and column categories
- Plot of row and column scores shows associations

References I

- Bangdiwala, S. I. Using SAS software graphical procedures for the observer agreement chart. *Proceedings of the SAS User's Group International Conference*, 12:1083–1088, 1987.
- Friendly, M. A fourfold display for 2 by 2 by K tables. Technical Report 217, York University, Psychology Dept, 1994a.
- Friendly, M. Mosaic displays for multi-way contingency tables. *Journal of the American Statistical Association*, 89:190–200, 1994b.