Two-way tables: Independence and association
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Two-way tables: Overview

Two-way contingency tables are a convenient and compact way to represent a
data set cross-classified by two discrete variables, A and B.

Special cases:

@ 2 x 2 tables: two binary factors (e.g., gender, admitted?, died?, ...)
@ 2 x 2 x k tables: a collection of 2 x 2s, stratified by another variable
@ r x ctables

@ r x c tables, with ordered factors

@ Are A and B statistically independent? (vs. associated)

@ If associated, what is the strength of association?

@ Measures: 2 x 2— odds ratio; r x c— Pearson x?, LR G?
@ How to understand the pattern or nature of association?




Two-way tables: Examples

2 x 2 table: Admissions to graduate programs at U. C. Berkeley

Table: Admissions to Berkeley graduate programs

Admitted Rejected | Total % Admit Odds(Admit)
Males 1198 1493 | 2691 44.52 0.802
Females 557 1278 | 1835 30.35 0.437
Total 1755 2771 | 4526 38.78 0.633

Males were nearly twice as likely to be admitted.
@ Association between gender and admission?
@ If so, is this evidence for gender bias?

@ How do characterise strength of association?
@ How to test for significance?
@ How to visualize?



2 x 2 tables: UCB data

In R, the data is contained in UCBAdmissions, a2 x 2 x 6 table for 6
departments. Collapse over department:

data (UCBAdmissions)
UCB <— margin.table (UCBAdmissions, 2:1)

UCB

## Admit

## Gender Admitted Rejected
## Male 1198 1493
## Female 557 1278

Association between gender and admit can be measured by the odds ratio,
the ratio of odds of admission for males vs. females. Details later.

oddsratio (UCB, log=FALSE)

## odds ratios for Gender and Admit
##

## [1] 1.8411

confint (oddsratio (UCB, log=FALSE))

o

## 2.5 % 97.5
## NA NA



. o
* YES, ON THE SURFACE IT WOULD APPEAR TO BE 59‘»?135
BUT LET US ASK THE FOLLOWING QUESTIONS,..”

@ How to analyse these data?
@ How to visualize & interpret the results?
@ Does it matter that we collapsed over Department?



Overview Examples

Two-way tables: Examples
r x ¢ table: Hair color and eye color— Students in a large statistics class.

Table: Hair-color eye-color data

Eye Hair Color

Color | Black Brown Red Blond | Total
Brown 68 119 26 7| 220
Blue 20 84 17 94 | 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64
Total 108 286 71 127 | 592

@ Association between hair color and eye color?
@ How do characterise strength of association?
@ How to test for significance?

@ How to visualize?

@ How to interpret the pattern of association?



r x c tables: HEC data

In R, the data is contained in HairEyeColor, a4 x 4 x 2 table for males and
females. Collapse over gender:

data (HairEyeColor)
HEC <— margin.table (HairEyeColor, 2:1)

Association between hair and eye color can be tested by the standard
Pearson x? test. Details later.

chisqg.test (HEC)

##

## Pearson's Chi-squared test

##

## data: HEC

## X-squared = 138, df = 9, p-value <2e-16



Overview Examples

Two-way tables: Examples
r x c table with ordered categories: Mental health and parents’ SES

Table: Mental impairment and parents’ SES

Mental impairment
SES | Well Mild Moderate Impaired
1 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78
6 21 71 54 71

@ Mental impairment is the response, SES is the predictor
@ How do characterise strength of association?

@ How to interpret the pattern of association?

@ How to take ordinal nature of the variables into account?



ordered r x c tables: Mental data |
In R, the data is contained in Mental in vcdExtira, a frequency data frame.

data (Mental, package="vcdExtra")
str (Mental)

## 'data.frame': 24 obs. of 3 variables:

## $ ses : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<,.,: 1 111 2 2 2 2 Z
## $ mental: Ord.factor w/ 4 levels "Well"<"Mild"<..: 1 2 3 412 3 412
## $ Freg : int 64 94 58 46 57 94 54 40 57 105

Convert to a contingency table using xtabs (), and test association:

mental.tab <- xtabs(Freq ~ ses + mental, data=Mental)
chisqg.test (mental.tab)

##

## Pearson's Chi-squared test

##

## data: mental.tab

## X-squared = 46, df = 15, p-value = 5.3e-05



ordered r x c tables: Mental data I

For ordinal factors, more powerful tests are available with
Cochran-Mantel-Haenszel tests:

CMHtest (mental.tab)

## Cochran-Mantel-Haenszel Statistics for ses by mental

#4# AltHypothesis Chisg Df Prob
## cor Nonzero correlation 37.2 1 1.09e-09
## rmeans Row mean scores differ 40.3 5 1.30e-07
## cmeans Col mean scores differ 40.7 3 7.70e-09
## general General association 46.0 15 5.40e-05

Details later, but x?/df gives a useful comparison.

#4 cor rmeans cmeans general
#4 37.16 8.06 13.56 3.06
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2 by 2 tables: Notation

Row 1Co|un;n Total Gender | Admit Reject Tot
] PR Male | 1198 1493 | 2691
> . Female 557 1278 | 1835

Total | 1755 2771 | 4526
Total | ny1  nio | Nyt

@ N = {n;} are the observed frequencies.
@ 4 subscript means sum over: row sums: n;; col sums: n,;; total sample
size:n,, =n
@ Similar notation for:
o Cell joint population probabilities: =j; also use 4 = w14 and mp = mo.
@ Population marginal probabilities: ;. (rows), 7 (cols)
e Sample proportions: use p; = n;/n, etc.
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Independence

Two categorical variables, A and B are statistically independent when:
@ The conditional distributions of B given A are the same for all levels of A

T =Toj = =T
@ Joint cell probabilities are the product of the marginal probabilities
Tjj = T4 T4j

For 2 x 2 tables, this gives rise to tests and measures based on

@ Difference in row marginal probabilities: test Hy : 71 = 72
@ Odds ratio

@ Standard x? tests also apply for large n

@ Fisher’s exact test or simulation required in small samples.
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Independence: Example |

In the Arthritis data, people are classified by Sex, Treatment and
Improved. Are Treatment and Improved independent?

@ — row proportions are the same for Treated and Placebo
@ — cell frequencies ~ row total x column total

data (Arthritis, package="vcd")
arth.tab <- xtabs( =~ Treatment + Improved, data=Arthritis)
round (prop.table (arth.tab, 1), 3)

#4 Improved

## Treatment None Some Marked
#4 Placebo 0.674 0.163 0.163
## Treated 0.317 0.171 0.512

More people given the Placebo show No improvement; more people Treated
show Marked improvement
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Independence: Example |l

Frequencies, if Treatment and Improved were independent:

row.totals <— margin.table(arth.tab, 1)
col.totals <— margin.table(arth.tab, 2)
round (outer (row.totals, col.totals)/ sum(arth.tab), 1)

#4 Improved

## Treatment None Some Marked
## Placebo 21.5 7.2 14.3
## Treated 20.5 6.8 13.7

These are the expected frequencies, under independence.
chisqg.test (arth.tab)

##

## Pearson's Chi-squared test

##

## data: arth.tab

## X-squared = 13.1, df = 2, p-value = 0.0015
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Sampling models: Poisson, Binomial, Multinomial

Some subtle distinctions arise concerning whether the row and/or column
marginal totals of a contingency table are fixed by the sampling design or
random.

@ Poisson: each nj is regarded as an independent Poisson variate; nothing
fixed

@ Binomial: each row (or col) is regarded as an independent binomial
distribution, with one fixed margin (group total), other random (response)

@ Multinomial: only the total sample size, n,, is fixed; frequencies nj; are
classified by A and B

@ These make a difference in how hypothesis tests are derived, justified
and explained.

@ Happily, for most inferential methods, the same results arise under
Poisson, binomial and multinomial sampling

Q: What is an appropriate sampling model for the UCB admissions data? For
the Hair-Eye color data? For the Mental impairment data?
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Odds and odds ratios

For a binary response where = = Pr(success), the odds of a success is
s

odds =

1—7

@ Odds vary multiplicatively around 1 (“even odds”, = = %)
@ Taking logs, the log(odds), or logit varies symmetrically around 0,

logit(r) = log(odds) = log (1 Ww)

p <- c(.1, .25, .50, .75, .9)

odds <= p / (1-p)

logodds <- log (odds)

(odds.df <- data.frame(p, odds, logodds))

## p odds logodds
## 1 0.10 0.111 -2.2
## 2 0.25 0.333 -1.1
## 3 0.50 1.000 0.0
## 4 0.75 3.000 1.1
## 5 0.90 9.000 2.2
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Log odds

1.0

Log odds:

@ Symmetric around 7 =
logit(7) = — logit(1 — )

@ Fairly linear in the middle,
02<7<0.8

@ The logit transformation of
probability provides the basis for
logistic regression
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2 by 2 tables Odds ratio

Odds ratio

For two groups, with probabilities of success =1, m2, the odds ratio, 0, is the
ratio of the odds for the two groups:

odds ratio = 4 = odds; _ m/(1=m) _mn/me _ mimz

oddsy  m2/(1—m2) mo1/me  i2T2d

@ /=1 — = =m — independence, no association
@ Same value when we interchange rows and columns (transpose)
@ Sample value, 6 obtained using nj.

More convenient to characterize association by log odds ratio, i) = log(9)
which is symmetric about 0:

log odds ratio = 1) = log(¢) = log [:;jg Zﬂ = logit(1) — logit(rz) .
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2 by 2 tables Odds ratio

Odds ratio: Inference and hypothesis tests

Symmetry of the distribution of the log odds ratio ¢» = log(#) makes it more
convenient to carry out tests independence as tests of Hp : ¢ = log(6) =0
rather than Hy : 6 = 1

~

@ z =1log(0)/SE(log(9)) ~ N(0,1)
oddsratio () in ved uses log(f) by default
oddsratio (UCB)

## log odds ratios for Gender and Admit
H [1] 0.61035

summary (oddsratio (UCB))

#4

## z test of coefficients:

i

#4# Estimate Std. Error z value Pr(>]|z]|)

## NA NA NA NA NA
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2 by 2 tables Odds ratio

Odds ratio: Inference and hypothesis tests
Or, in terms of odds ratios directly:

oddsratio (UCB, log=FALSE)

## odds ratios for Gender and Admit
i
## [1] 1.8411

confint (oddsratio (UCB, log=FALSE))

## 2.5 % 97.5
# NA NA

o

Males 1.84 times as likely to be admitted, with 95% CI of 1.62 < 6 < 2.09.
chisqg.test () just tests association:

chisqg.test (UCB)

##

## Pearson's Chi-squared test with Yates' continuity correction
##

## data: UCB

## X-squared = 91.6, df = 1, p-value <2e-16
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Small sample size
@ Pearson x? and LR G? tests are valid only when most expected

frequencies > 5
@ Otherwise, use Fisher’s exact test or simulated p-values

Example
Is there a relation between high cholesterol in diet and heart disease?

fat <= matrix(c(6, 2, 4, 11), 2, 2)
dimnames (fat) <- list (cholesterol=c("low", "high"),
disease=c("no", "yes"))

fat

## disease
## cholesterol no yes
#4 low 6 4

i high 2 11
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Small sample size

The standard Pearson x? is not significant:
chisqg.test (fat)

##

## Pearson's Chi-squared test with Yates' continuity correction
##

## data: fat

## X-squared = 3.19, df = 1, p-value = 0.074

We get a warning message:

In chisg.test (fat) : Chi-squared approximation may be incorrect
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Small sample size

Using Monte Carlo simulation to calculate the p-value:
chisqg.test (fat, simulate=TRUE)

##

## Pearson's Chi-squared test with simulated p-value (based on
## 2000 replicates)

##

## data: fat

## X-squared = 4.96, df = NA, p-value = 0.034

This method repeatedly samples cell frequencies from tables with the same

margins, and calculates a x? for each.
The 2 test is now significant
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Small sample size

Fisher's exact test: calculates probability for all 2 x 2 tables as or more
extreme than the data.

fisher.test (fat)

## Fisher's Exact Test for Count Data

## data: fat

## p-value = 0.039

## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:

#4 0.86774 105.56694

## sample estimates:

## odds ratio

#4 7.4019

The p-value is similar to the result using simulation.
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2 by 2 tables Fourfold plots

Visualizing: Fourfold plots

fourfold(UCB, std="ind.max") # maximum frequency

Gender: Male

Friendly (1994a):
@ Fourfold display: area ~
frequency, n;
@ Color: blue (+), red(—)
@ This version: Unstandardized

@ Odds ratio: ratio of products of
blue / red cells

Admit: Admitted
Admit: Rejected

Gender: Female
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2 by 2 tables Fourfold plots

Visualizing: Fourfold plots

fourfold (UCB) #standardize both margins

Gender: Male

Better version:
@ Standardize to equal row, col
margins
@ Preserves the odds ratio
@ Confidence bands: significance of
odds ratio
@ Ifdon'toverlap — 6 #1

Admit: Admitted
Admit: Rejected

Gender: Female
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Cholesterol data

fourfold(fat)

cholesterol: low

disease: no
disease: yes

cholesterol: high
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Stratified 2 x 2 x k tables

The UC Berkeley data was collected for 6 graduate departments:

ftable (addmargins (UCBAdmissions, 3))

## Dept A B C D E F  Sum
## Admit Gender

## Admitted Male 512 353 120 138 53 22 1198
#4 Female 89 17 202 131 94 24 557
## Rejected Male 313 207 205 279 138 351 1493
## Female 19 8 391 244 299 317 1278

@ Does the overall association between gender and admission apply in
each department?

@ Do men and women apply equally to all departments?

@ Do departments differ in their rates of admission?

Stratified analysis tests association between a main factor and a response
within the levels of control variable(s)
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2 by 2 tables Stratified tables

Stratified 2 x 2 x k tables
Odds ratios by department:

summary (oddsratio (UCBAdmissions))

##

## z test of coefficients:

#4#

#4# Estimate Std. Error z value Pr(>|z|)

## A -1.052 0.263 -4.00 6.2e-05 xxx*
## B -0.220 0.438 -0.50 0.62

## C 0.125 0.144 0.87 0.39

## D -0.082 0.150 -0.55 0.59

## E 0.200 0.200 1.00 0.32

## F -0.189 0.305 -0.62 0.54

## ——

## Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

@ Odds ratio only significant, log(#) # 0 for department A

@ For department A, men are only exp(—1.05) = .35 times as likely to be
admitted as women

@ The overall analysis ignoring department is misleading: falsely assumes
no associations of admission with department and gender with
department.
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2 by 2 tables Stratified tables

Stratified 2 x 2 x k tables

Fourfold plots by department (intense shading where significant):

fourfold (UCBAdmissions)

Dept: A Dept: C Dept: E
Gender: Male Gender: Male Gender: Male
313 120 205 53 138
2 2 2 2 2 2
E=1 5 E g = g
E 2, £ 108 £ o8
5 T 5 T T ()
< ¢ < < 4
: 3 KJ i K% :
3 5 T 5 T 3
< < < < < <
89 19 202 391 94 299
Gender: Female Gender: Female Gender: Female
Dept: B Dept: D Dept: F
Gender: Male Gender: Male Gender: Male
353 138 279 351

207 22
. f\ . K\\ o KN .
2 2 2 2 2 2
£ 5 E 5 E S
£ 2 E 10N £ D
3 T 35 T T [
< o < o < o
: KJ : \\J 5 K J :
S s o S 3 S
< < < < < <
17 8 131 244 24 317
Gender: Female Gender: Female Gender: Female
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2 by 2 tables Stratified tables

Stratified 2 x 2 x k tables
Or plot odds ratios directly:

plot (oddsratio (UCBAdmissions), cex=1.5, xlab="Department")

log odds ratios for Admit and Gender by Dept

05 —

LOR(Admit / Gender)
&
3 o
| |

[
iR
1

-1.5 -

Department
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2 by 2 tables Stratified tables

Stratified tables: Homogeneity of odds ratios

Related questions:

@ Are the k odds ratios all equal, 61 = 6, ..., 0,? (Woolf’s test:
woolf test ())

@ (This is equivalent to the hypothesis of no three-way association)

@ /f homogeneous, is the common odds ratio different from 1?
(Mantel-Haenszel test: mantelhaen.test ())

woolf_test (UCBAdmissions)

#4
## Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.)

##
## data: UCBAdmissions
## X-squared = 17.9, df = 5, p-value = 0.0031

Odds ratios differ across departments, so no sense in testing their common
value.
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Exegesis: What happened at UC Berkeley?

Why do the results collapsed over department disagree with the results by
department?

Simpson’s paradox

@ Aggregate data are misleading because they falsely assume men and
women apply equally in each field.

@ But:

o Large differences in admission rates across departments.
@ Men and women apply to these departments differentially.
e Women applied in large numbers to departments with low admission rates.

@ Other graphical methods can show these effects.

@ (This ignores possibility of structural bias against women: differential
funding of fields to which women are more likely to apply.)
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2 by 2 tables Stratified tables

Mosaic matrix shows all pairwise associations:

Admit

Admit

Female

[
T
b3
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##
##
##
##
##
##
##

r by c tables

x ¢ tables: Overall analysis

@ Overall tests of association: assocstats () : Pearson chi-square and
LR G?

@ Strength of association: ¢ coefficient, contingency coefficient (C),
CramersV (0 <V <1)

2 2 2
2 _ X" _ X _ X2/n
= €= n+x2 "’ V\/min(r—1,c—1)

@ Fora2 x 2table, V = ¢.
@ (If the data table was collapsed from a 3+ way table, the two-way
analysis may be misleading)

socstats (HEC)

X"2 df P(> X"2)
Likelihood Ratio 146.44 9 0
Pearson 138.29 9 0
Phi-Coefficient : NA
Contingency Coeff.: 0.435

Cramer's V : 0.279
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r by c tables

r

x ¢ tables: Overall analysis and residuals
@ The Pearson X2 and LR G? statistics have the following forms:

nj — m;)? n;i

xe =y WMl ge N g (0

ey D nilog (=
i 4 ij 4

@ Expected (fitted) frequencies under independence: m; = njn./ny
@ Each of these is a sum-of-squares of corresponding residuals
@ Degrees of freedom: df = (r — 1)(c — 1) — # independent residuals

Can get residuals from 1oglm() in MASS:

1i
mo
mo

##
##
##
##
##
##
##

brary (MASS)
d <- loglm("Hair + Eye, data=HEC, fitted=TRUE)
d
Call:
loglm(formula = "Hair + Eye, data = HEC, fitted = TRUE)
Statistics:
X"2 df P(> X"2)
Likelihood Ratio 146.44 9 0

Pearson 138.29 9 0
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Extract residuals:

res.P <- residuals(mod, type="pearson")
res.LR <—- residuals (mod, type="deviance") # default
res.P

#4# Hair

## Eye Black Brown Red Blond
## Brown 4.398 1.233 -0.075 -5.851
## Blue -3.069 -1.949 -1.730 7.050
## Hazel -0.477 1.353 0.852 -2.228
## Green -1.954 -0.345 2.283 0.613

Demonstrate SSQ property:

unlist (mod[c ("pearson", "deviance", "df")])

## pearson deviance df
## 138.29 146.44 9.00
sum(res.P"2) # Pearson chisg

## [1] 138.29
sum(res.LR"2) # LR chisqg

## [1] 146.44



r by c tables Plots

Plots for two-way tables: Bar plots
Bar plots are usually not very useful

HE <- margin.table (HairEyeColor, 2:1) # as in Table 4.2
barplot (HE, xlab="Hair color", ylab="Frequency")

250
|

Frequency
150
1

50
L

ilﬁi

Black Brown Blond

Hair color
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r by c tables Plots

Plots for two-way tables: Spine plots
Spine plots show the marginal proportions of one variable, and the conditional
proportions of the other. Independence: Cells align

spineplot (HE)
spineplot (t (HE))
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r by c tables Plots

Plots for two-way tables: Tile plots
Tile plots show a matrix of tiles. They can be scaled to allow for different types
of comparisons: cells, rows, cols.

tile (HE)
tile(HE, tile_type="width")

Hair Hair
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r by c tables Sieve diagrams

Visualizing association: Sieve diagrams
Visual metaphor: count ~ area

@ When row/col variables are independent, n; ~ mj; ~ nj.n,;
@ = each cell can be represented as a rectangle, with area = height x
width ~ frequency, nj; (under independence)

Expected frequencies: Hair Eye Color Data

Green 11.7 1809 o e 137 64
Hazel :17.0. [ 44.9 Li111.2.).:.20.0 93 X i
[ RN RN R @ This display shows expected
frequencies, assuming
Blue | 392 1039 ssgl a6t | 215 independence, as # boxes within

each cell

@ The boxes are all of the same size
(equal density)

Brown| 140l |\ oir0esir)izeal 142 1220 @ Real sieve diagrams use # boxes

e e = observed frequencies, nj

Eye Color

108 286 71 127 592
Black Brown Red Blond
Hair Color
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r by c tables

Sieve diagrams

@ Height, width ~ marginal frequencies, n;,, n,;

@ —> Area ~ expected frequency, m; ~ nj.n,;

).

n,-,-—m,-]-

@ — Independence: Shown when density of shading is uniform.

@ Shading ~ observed frequency, nj, color: sign(
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r by c tables Sieve diagrams

Sieve diagrams

Vision classification data for 7477 women: visual acuity in left, right eyes

Unaided distant vision data

High

@ The obvious association is
apparent on the diagonal cells

@ A more subtle pattern appears on
the off-diagonal cells

@ Analysis methods for square
tables (later) allow testing
hypotheses of symmetry,
guasi-symmetry, etc.

N

Right Eye Grade

w

Low

High 2 3 Low
Left Eye Grade
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Ordered factors

Ordinal factors

The Pearson x? and LR G? give tests of general association, with
(r—1)(c—1)df.

More powerful CMH tests

@ When either the row or column levels are ordered, more specific CMH
(Cochran—Mantel-Haentzel) tests which take order into account have
greater power to detect ordered relations.

@ This is similar to testing for linear trends in ANOVA

@ Essentially, these assign scores to the categories, and test for differences
in row / column means, or non-zero correlation.
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Ordered factors CMH tests

CMH tests for ordinal variables

Three types of CMH tests:

Non-zero correlation
@ Use when both row and column variables are ordinal.
@ CMH x2 = (N — 1)r?, assigning scores (1, 2, 3, ...)
@ most powerful for linear association

Row/Col Mean Scores Differ

@ Use when only one variable is ordinal
@ Analogous to the Kruskal-Wallis non-parametric test (ANOVA on rank
scores)

General Association

@ Use when both row and column variables are nominal.
@ Similar to overall Pearson x? and Likelihood Ratio G?.
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Sample CMH Profiles

Only general association:

| bl | b2 | b3 | b4 | b5 | Total Mean
———————— e e St et T
al | 0 | 15 | 25 | 15 | 0 | 55 3.0
a2 | 5 | 20 | 5 | 20 | 5 | 55 3.0
a3 | 20 | 5 | 5 | 5 | 20 | 55 3.0
———————— R T S it
Total 25 40 35 40 25 165
Output:
Cochran—-Mantel-Haenszel Statistics (Based on Table Scores)
Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 0.000 1.000
2 Row Mean Scores Differ 2 0.000 1.000

3 General Association 8 91.797 0.000
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Sample CMH Profiles

Linear Association:

| bl | b2 | b3 | b4 | b5 |  Total Mean
———————— e e T 2 A
al | 2 | 5 | 8 | 8 | 8 | 31 3.48
az | 2 | 8 | 8 | 8 | 5 31 3.19
a3 | 5 8 | 8 | 8 | 2 | 31 2.81
a4 | 8 | 8 | 8 | 5 | 2 | 31 2.52
77777777 -t}
Total 17 29 32 29 17 124
Output:
Cochran—-Mantel-Haenszel Statistics (Based on Table Scores)
Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 10.639 0.001
2 Row Mean Scores Differ 3 10.676 0.014

3 General Association 12 13.400 0.341
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Sample CMH Profiles

Visualizing Association: Sieve diagrams

General Association Linear Association
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Example: Mental health data

@ In R, these tests are provided by cMHtest () in the vcdExira package

@ For the mental health data, both factors are ordinal

@ All tests are significant

@ The nonzero correlation test, with 1 df, has the smallest p-value, largest
X2/ df

mental.tab <—- xtabs(Freq ~ ses + mental, data=Mental)
CMHtest (mental.tab)

## Cochran-Mantel-Haenszel Statistics for ses by mental

#4# AltHypothesis Chisg Df Prob
## cor Nonzero correlation 37.2 1 1.09e-09
## rmeans Row mean scores differ 40.3 5 1.30e-07
## cmeans Col mean scores differ 40.7 3 7.70e-09
## general General association 46.0 15 5.40e-05
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Observer Agreement

@ Inter-observer agreement often used as to assess reliability of a
subjective classification or assessment procedure

e — square table, Rater 1 x Rater 2
o Levels: diagnostic categories (normal, mildly impaired, severely impaired)
@ Agreement vs. Association: Ratings can be strongly associated without
strong agreement

@ Marginal homogeneity: Different frequencies of category use by raters
affects measures of agreement
@ Measures of Agreement:
o Intraclass correlation: ANOVA framework— multiple raters!
e Cohen’s x: compares the observed agreement, P, = ) pj;, to agreement
expected by chance if the two observer’s ratings were independent,

Pe =37 pis pei- b p
_ FPo—F¢

T1-F,
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3
Cohen’s &

Properties of Cohen’s x:

@ perfect agreement: x = 1

@ minimum « may be < 0; lower bound depends on marginal totals

@ Unweighted «: counts only diagonal cells (same category assigned by
both observers).

@ Weighted «: allows partial credit for near agreement. (Makes sense only
when the categories are ordered.)

Weights:

@ Cicchetti-Alison (inverse integer spacing)
@ Fleiss-Cohen (inverse square spacing)

Integer Weights Fleiss—Cohen Weights
1 2/3 1/3 0 1 8/9 5/9 0
2/3 1 2/3 1/3 8/9 1 8/9 5/9
1/3 2/3 1 2/3 5/9 8/9 1 8/9
0 1/3 2/3 1 0 5/9 8/9 1
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Observer agreement Cohen’s kappa

Cohen’s x: Example

The table below summarizes responses of 91 married couples to a
questionnaire item,
Sex is fun for me and my partner (a) Never or occasionally, (b) fairly
often, (c) very often, (d) almost always.

————————— Wife's Rating ———————-
Husband's Never Fairly Very Almost
Rating fun often Often always | SUM
77777777777777777777777777777777777777777777777777 +7777777
Never fun 7 7 2 3 | 19
Fairly often 2 8 3 7 | 20
Very often 1 5 4 9 | 19
Almost always 2 8 9 14 | 33
__________________________________________________ +_______
SUM 12 28 18 33 | 91
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Cohen’s x: Example
The Kappa () function in vcd calculates unweighted and weighted &, using
equal-spacing weights by default.

data (SexualFun, package="vcd")
Kappa (SexualFun)

#4# value ASE z Pr(>|z|)
## Unweighted 0.129 0.0686 1.89 0.05939
## Weighted 0.237 0.0783 3.03 0.00244
Kappa (SexualFun, weights="Fleiss-Cohen")
#4 value ASE z Pr(>|z])

## Unweighted 0.129 0.0686 1.89 0.059387
## Weighted 0.332 0.0973 3.41 0.000643

Unweighted « is not significant, but both weighted versions are.
You can obtain confidence intervals with the conf£int () method
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Observer agreement: Multiple strata

When the individuals rated fall into multiple groups, one can test for:
@ Agreement within each group
@ Overall agreement (controlling for group)
@ Homogeneity: Equal agreement across groups

Example: Diagnostic Classification of MS patients

Patients in Winnipeg and New Orleans were each classified by a neurologist
in each city

Winnipeg patients New Orleans patients
NO rater:
Cert Prob Pos Doubt Cert Prob Pos Doubt
Winnipeg rater:

Certain MS 38 5 0 1 5 3 0 0
Probable 33 11 3 0 3 11 4 0
Possible 10 14 5 6 2 13 3 4
Doubtful MS 3 7 3 10 1 2 4 14
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Observer agreement: Multiple strata
Here, simply assess agreement between the two raters in each stratum
separately

data (MSPatients, package="vcd")
Kappa (MSPatients([,,1])

## value ASE z Pr(>]z]|)
## Unweighted 0.208 0.0505 4.12 3.77e-05
## Weighted 0.380 0.0517 7.35 1.99e-13
Kappa (MSPatients[,,2])

#4 value ASE z Pr(>|z])

## Unweighted 0.297 0.0785 3.78 1.59e-04
## Weighted 0.477 0.0730 6.54 6.35e-11

The irr package (inter-rater reliability) provides ICC and other measures, and
handles the case of k > 2 raters.
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Bangdiwala’s Observer Agreement Chart

The observer agreement chart Bangdiwala (1987) provides

@ a simple graphic representation of the strength of agreement, and
@ a measure of strength of agreement with an intuitive interpretation.

Construction:

@ n x nsquare, n=total sample size

@ Black squares, each of size n; x n; — observed agreement

@ Positioned within larger rectangles, each of size nj; x ny; — maximum
possible agreement

@ = visual impression of the strength of agreement is B:

_ area of dark squares Zf‘ nz

area of rectangles s . p,

@ = Perfect agreement: B = 1, all rectangles are completely filled.



Observer agreement Agreement Chart

Weighted Agreement Chart: Partial agreement

Partial agreement: include weighted contribution from off-diagonal cells, b
steps from the main diagonal, using weights 1 > wy > wp > - - -.

Ni_p.i
i—b,i Wo
Wi
Niji—p -+ Nij Nijvpb we w1 w we
]
: W
Ni—p,i

@ Add shaded rectangles, size ~ sum of frequencies, Ay, within b steps of
main diagonal
@ = weighted measure of agreement,

. k
_ weighted sum of agreement ’ S nieng —m =30, wpApi]
B area of rectangles N Zfﬁ Niy Nyj

BW
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Observer agreement Agreement Chart

Husbands and wives: B = 0.146, BY = 0.498

agreementplot (SexualFun, main="Unweighted", weights=1)
agreementplot (SexualFun, main="Weighted")

Unweighted Weighted
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Observer agreement Marginal homogeneity

Marginal homogeneity and Observer bias
@ Different raters may consistently use higher or lower response categories
@ Test— marginal homogeneity: Hyp : nj. = n.;
@ Shows as departures of the squares from the diagonal line

Winnipeg patients New Orleans patients
84 L 37 ‘11 1 11 L 29 L 11 18
2
-§ 23 s
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z z 3 21
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o7 35 °
ok =
2 2
[} []) %
z zZ3 22
n 3 0 8
%g 47 S
L a @ L
P P
o] O¢
©
8 . 8 % ®
Z g 44 z*
38 < r
<
§ 8

Certain Probable PossiBleubtful Certain Probable Possible  Doubtful

Winnipeg Neurologist Winnipeg Neurologist

@ Winnipeg neurologist tends to use more severe categories
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Looking ahead

Looking ahead

Loglinear models

Loglinear models generalize the Pearson x? and LR G? tests of association to
3-way and larger tables.

@ Allows a range of models from mutual independence ([A][B][C]) to the
saturated model ([ABC])

@ Intermediate models address questions of conditional independence,
controlling for some factors

@ Can test associations in 2-way, 3-way terms analogously to tests of
interactions in ANOVA

Example: UC Berkeley data

@ Mutual independence: [Admit] [Gender] [Dept]

@ Joint independence: [Admit] [Gender*Dept]

@ Conditional independence: [Admit*Dept] [Admit*Gender]: A specific test
for absence of gender bias, controlling for department
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Looking ahead

Looking ahead

Mosaic displays

Mosaic plots provide visualizations of associations in 2+ way tables.

@ Tiles: ~ frequency
@ Fit loglinear model
@ Shading: ~ residuals

Mutual Marginal

uuuuuuuuuuuuuuuuuuu

[Hair] [Eye] [Sex] [Hair] [Eye]
G‘(224) = 166.30 G(Zg) = 146.44

| —
§|:|

Joint

: |:|

L

O e -

IO -

[Hair Eye] [Sex]
G‘(215) =19.86
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Looking ahead

Looking ahead

@ Account for max. % of x2 in few (2-3) dimensions
@ Find scores for row and column categories
@ Plot of row and column scores shows associations
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