Categorical Data Analysis: Course Overview

Michael Friendly

Psych 6136

September 4, 2017

Course goals

This course is designed as a broad, applied introduction to the statistical analysis of categorical (or discrete) data, with an emphasis on:

Emphasis: visualization methods

- exploratory graphics: see patterns, trends, anomalies in your data
- model diagnostic methods: assess violations of assumptions
- model summary methods: provide an interpretable summary of your data

Emphasis: theory \Rightarrow practice

 Understand how to translate research questions into statistical hypotheses and models

Course organization

- Understand the difference between simple, non-parametric approaches (e.g., χ^2 test for indpendence) and model-based methods (logistic regression, GLM)
- Framework for thinking about categorical data analysis in visual terms

Course organization

Course outline

I. Exploratory and hypothesis testing methods

- Week 1: Overview; Introduction to R
- Week 2: One-way tables and goodness-of-fit test
- Week 3: Two-way tables: independence and association
- Week 4: Two-way tables: ordinal data and dependent samples
- Week 5: Three-way tables: different types of independence
- Week 6: Correspondence analysis

2. Model-based methods

- Week 7: Logistic regression I
- Week 8: Logistic regression II
- Week 9: Multinomial logistic regression models
- Week 10: Log-linear models
- Week 11: Loglinear models: Advanced topics
- Week 12: Generalized Linear Models: Poisson regression
- Week 13: Course summary & additional topics

Textbooks

Main texts:

- Friendly, M. and Meyer, D. (2016). Visualizing Categorical Data with R. Chapman & Hall. Web site: <u>http://ddar.datavis.ca</u>. Old draft Chapters on the web (password protected). <u>http://euclid.psych.yorku.ca/www/psy6136/</u>
- Agresti, Alan (2007). *An Introduction to Categorical Data Analysis*. 2nd ed. John Wiley & Sons, Inc.: New York. ISBN: 978-0-471-22618-5. Available in the bookstore.

Supplementary readings:

For those who desire a more in-depth treatment of categorical data analysis:

Agresti, Alan (2013). Categorical Data Analysis. 3rd ed. New York: John Wiley & Sons, Inc. New York. ISBN: 978-0-470-46363-5

What is categorical data?

Categorical data structures: 1-way tables

A *categorical variable* is one for which the possible measured or assigned values consist of a discrete set of categories, which may be *ordered* or *unordered*.

Some typical examples are:

- Gender, with categories "Male", "Female".
- *Marital status*, with categories "Never married", "Married", "Separated", "Divorced", "Widowed".

What is categorical data?

- Party preference, with categories "NDP", "Liberal", "Conservative", "Green".
- *Treatment outcome*, with categories "no improvement", "some improvement", or "marked improvement".
- Age, with categories "0-9", "10-19", "20-29", "30-39",
- Number of children, with categories $0,1,2,\ldots$.

Simplest case: 1-way frequency distribution

Unordered factor

Hair			own F 286	Red Blor 71 12			Hair color among 592 students
Party	BQ	Cons	Green	Liberal	NDP	Total	Voting intention in
N	104	392	126	404	174	1200	Harris- <u>Decima</u>
8	8.7	32.6	10.5	33.7	14.5	100	poll, 8/21/08

Questions:

- Are all hair colors equally likely?
- Do blondes have more fun?
- Is there a difference in voting intentions between Liberal and Conservative?

Categorical data structures

5/29
What is categorical data? Categorical data structures

Categorical data structures: 1-way tables

Even here, simple graphs are better than tables

But these don't really provide answers to the questions. Why?

Categorical data structures

Simplest case: 1-way frequency distribution

• Ordered, quantitative factor

Questions:

- What is the *form* of this distribution?
- Is it useful to think of this as a binomial distribution?

What is categorical data?

- If so, is Pr(male) = .5 reasonable?
- How could so many families have 12 children?

Categorical data structures: 1-way tables

When a particular distribution is in mind,

- better to plot the data together with the fitted frequencies
- better still: a *hanging rootogram* plot frequencies on sqrt scale, and hang the bars from the fitted values.

What is categorical data? Categorical data structures

Categorical data structures: 2x2 tables

Contingency tables $(2 \times 2 \times ...)$

Two-way

NAT 100 - 200 - 200	nder Male F	emale	Admission to
Admit	1100		graduate programs
Admitted	1198	557	at UC Berkeley
Rejected	1493	1278	

What is categorical data? Categorical data structures

• Three-way, stratified by another factor

			Dept	А	в	С	D	Е	F
	Admit	Gender							
by Department	Admitted	Male		512	353	120	138	53	22
		Female		89	17	202	131	94	24
	Rejected	Male		313	207	205	279	138	351
		Female		19	8	391	244	299	317

Categorical data structures

Sex

Male

Female

Hair

Red Blond Black

Black

Brown Red Blond

Questions:

- Is admission associated with gender?
- Does admission rate vary with department?

What is categorical data?

9/29

What is categorical data? Categorical data structures

Categorical data structures: Larger tables

Contingency tables (larger)

Two-way

	Eye	Brown	Blue	Hazel	Green
Hair					
Black		68	20	15	5
Brown		119	84	54	29
Red		26	17	14	14
Blond		7	94	10	16

• Three-way

		Еуе	Brown	Blue	Hazel	Green
Sex	Hair					
Male	Black		32	11	10	3
	Brown		53	50	25	15
	Red		10	10	7	7
	Blond		3	30	5	8
Female	Black		36	9	5	2
	Brown		66	34	29	14
	Red		16	7	7	7
	Blond		4	64	5	8

Table and case-form

- The previous examples were shown in table form
 - # observations = # cells in the table
 - variables: factors + COUNT
- Each has an equivalent representation in case form
 - # observations = total COUNT
 - variables: factors
- Case form is required if there are continuous variables
- Case form is tidy

				-
				2
Brown	Blue	Hazel	Green	4
32	11	10	3	4
53	50	25	15	5
10	10	7	7	
3	30	5	8	
36	9	5	2	
66	34	29	14	28
16	7	7	7	
4	64	5	8	

12/29

Categorical data: Analysis methods

Methods of analysis for categorical data fall into two main categories:

Non-parametric, randomization-based methods

- Make minimal assumptions
- Useful for hypothesis-testing:
 - Are men more likely to be admitted than women?
 - Are hair color and eye color associated?
 - Does the binomial distribution fit these data?
- Mostly for two-way tables (possibly stratified)
- R:
 - Pearson Chi-square: chisq.test()
 - Fisher's exact test (for small expected frequencies): fisher.test()
 - Mantel-Haenszel tests (ordered categories: test for *linear* association): CMHtest()
- SAS: PROC FREQ can do all the above
- SPSS: Crosstabs

Categorical data: Analysis methods

Model-based methods

- Must assume random sample (possibly stratified)
- Useful for estimation purposes: Size of effects (std. errors, confidence intervals)
- More suitable for multi-way tables
- Greater flexibility; fitting specialized models
 - Symmetry, quasi-symmetry, structured associations for square tables
 - Models for ordinal variables
- R: glm () family, Packages: car, gnm, vcd, ...
 - estimate standard errors, covariances for model parameters
 - confidence intervals for parameters, predicted Pr{response}
- SAS: PROC LOGISTIC, CATMOD, GENMOD, INSIGHT (Fit YX), ...
- SPSS: Hiloglinear, Loglinear, Generalized linear models

13/29

14/29

Analysis Methods

Categorical data: Response vs. Association models

Response models

- Sometimes, one variable is a natural discrete response.
- Q: How does the response relate to explanatory variables?
 - Admit \sim Gender + Dept
 - Party \sim Age + Education + Urban
- $\Rightarrow\,$ Logit models, logististic regression, generalized linear models

Association models

- Sometimes, the main interest is just association among variables
- Q: Which variables are associated, and how?
 - Berkeley data: [Admit Gender]? [Admit Dept]? [Gender Dept]
 - Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye, Sex]
- \Rightarrow Loglinear models

This is similar to the distinction between regression/ANOVA vs. correlation and factor analysis

Analysis Methods Graphical methods

Graphical methods: Tables and Graphs

If I can't picture it, I can't understand it.

Albert Einstein

Getting information from a table is like extracting sunlight from a cucumber. Farquhar & Farquhar, 1891

Tables vs. Graphs

- Tables are best suited for look-up and calculation-
 - read off exact numbers
 - show additional calculations (e.g., % change)
- Graphs are better for:
 - showing patterns, trends, anomalies,
 - making comparisons
 - seeing the unexpected!
- Visual presentation as communication:
 - what do you want to say or show?
 - lacksim \Longrightarrow design graphs and tables to 'speak to the eyes'

Analysis Methods Graphical methods

Graphical methods: Communication goals

Different audiences require different graphs:

- **Presentation**: A single, carefully crafted graph to appeal to a wide audience
- **Exploration, analysis**: Many related graphics from different perspectives, for a narrow audience (often: you!)

Graphical methods: Presentation goals

Different presentation goals appeal to different design principles

Analysis Methods Graphical methods

Graphical methods: Quantitative data

Quantitative data (amounts) are naturally displayed in terms of magnitude \sim position along a scale

Analysis Methods

Graphical methods

Graphical methods: Categorical data

Frequency data (counts) are more naturally displayed in terms of $count \sim area$ (Friendly, 1995)

Fourfold display for 2×2 table

• Principles of Graphical Displays

• Effect ordering (Friendly and Kwan, 2003)— In tables and graphs, sort unordered factors according to the effects you want to see/show.

"Corrgrams: Exploratory displays for correlation matrices" (Friendly, 2002)

• Effect ordering and high-lighting for tables

Table: Hair color - Eye color data: Effect ordered

	Hair color							
Eye color	Black Brown Red Blond							
Brown	68	119	26	7				
Hazel	15	54	14	10				
Green	5	29	14	16				
Blue	20	84	17	94				

Model:	<i>Independence</i> : [Hair][Eye] χ^2 (9)= 138.29							
Color coding:	<-4 <-2 <-1 0 >1 >2 >4							
<i>n</i> in each cell:	n <	expec	ted		n >	expe	cted	

Analysis Methods Effect ordering

Clustered heat map: Showing patterns in tables

Permuted Data Matrix

The clustered heat map is one method for making large tables more visually understandable.

- Social statistics from UN survey
- Rows and columns are sorted, using cluster analysis
- Standardized data values are encoded using color

Bertifier: Turning tables into graphics

Bertifier: A web app implementing Bertin's idea of the *reorderable matrix*. See: http://www.aviz.fr/bertifier

A table: Attitudes and attributes by country

- Values encoded by size and shape
- Sorted and grouped by themes and country regions

Watch: Youtube video of Bertifier

Analysis Methods Effect ordering

Visual comparisons

Comparisons— Make visual comparisons easy

- Visual grouping— connect with lines, make key comparisons contiguous
- Baselines— compare *data* to *model* against a line, preferably horizontal
- Frequencies often better plotted on a square-root scale

- **Small multiples** combine stratified graphs into coherent displays (Tufte, 1983)
 - e.g., scatterplot matrix for quantitative data: all pairwise scatterplots

25/29

Analysis Methods Effect ordering

Analysis Methods Effect ordering

• e.g., mosaic matrix for categorical data: all pairwise mosaic plots

Graphical methods: Categorical data

Exploratory methods

- Minimal assumptions (like non-parametric methods)
- Show the *data*, not just *summaries*
- But can add summaries: smoothed curve(s), trend lines, ...
- Help detect patterns, trends, anomalies, suggest hypotheses

Plots for model-based methods

- Residual plots departures from model, omitted terms, ...
- Effect plots estimated probabilities of response or log odds
- Diagnostic plots influence, violation of assumptions

Analysis Methods Effect ordering

References I

- Friendly, M. Conceptual and visual models for categorical data. *The American Statistician*, 49:153–160, 1995.
- Friendly, M. Corrgrams: Exploratory displays for correlation matrices. *The American Statistician*, 56(4):316–324, 2002.
- Friendly, M. and Kwan, E. Effect ordering for data displays. *Computational Statistics and Data Analysis*, 43(4):509–539, 2003.
- Tufte, E. R. *The Visual Display of Quantitative Information*. Graphics Press, Cheshire, CT, 1983.