Extending Loglinear Models

Michael Friendly

Psych 6136

November 16, 2017
Visual overview: Models for frequency tables

- **Generalized nonlinear models**
 \[\text{gnm}(F \sim A+B+\text{Mult}(A,B), \text{family}=\text{poisson}) \]

- **Generalized linear models**
 \[\text{glm}(F \sim A+B, \text{family}=\text{poisson}) \]

- **Loglinear models**
 \[\text{loglm}(-A+B) \]

- Related models: logistic regression, polytomous regression, log odds models, ...
- Goals: Connect all with visualization methods
Loglinear models: Perspectives

Loglinear approach

Loglinear models were first developed as an analog of classical ANOVA models, where multiplicative relations (under independence) are re-expressed in additive form as models for log(frequency).

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_j^B \equiv [A][B] \equiv \sim A + B$$

- This expresses the model of independence for a two-way table (no A*B association, or $$A \perp B$$)
- The notations $$[A][B] \equiv \sim A + B$$ are shorthands
Extended loglinear models

Loglinear models can be extended in a variety of ways:

- Models for *ordinal* factors allow a more parsimonious description of association
- Specialized models for *square* tables provide more nuanced hypotheses
- These ideas apply to higher-way tables
- Some of these extensions are more easily understood or used when loglinear models are re-cast in an equivalent, but simpler or more general form
Loglinear models: Perspectives

GLM approach

More generally, loglinear models are also generalized linear models (GLMs) for log(frequency), with a Poisson distribution for the cell counts.

\[\log m = X\beta \]

- This looks just like the general linear ANOVA, regression model, but for log frequency
- This approach allows quantitative predictors and special ways of treating ordinal factors
Loglinear models: Perspectives

Logit models

When one table variable is a **binary response**, a logit model for that response is equivalent to a loglinear model.

\[
\log\left(\frac{m_{1jk}}{m_{2jk}}\right) = \alpha + \beta_j^B + \beta_k^C \equiv [AB][AC][BC]
\]

- \(\log\left(\frac{m_{1jk}}{m_{2jk}}\right)\) represents the **log odds** of response category 1 vs. 2
- The model formula includes only terms for the effects on A of variables B and C
- The equivalent loglinear model is [AB] [AC] [BC]
- The logit model assumes [BC] association, and [AB] \(\rightarrow \beta_j^B\), [AC] \(\rightarrow \beta_k^C\)
Logit models

For a *binary* response, each loglinear model is equivalent to a logit model (logistic regression, with categorical predictors)

- e.g., Admit ⊥ Gender | Dept (conditional independence ≡ [AD][DG])

\[
\log m_{ijk} = \mu + \lambda_i^A + \lambda_j^D + \lambda_k^G + \lambda_{ij}^{AD} + \lambda_{jk}^{DG}
\]

So, for admitted \((i = 1)\) and rejected \((i = 2)\), we have:

\[
\begin{align*}
\log m_{1jk} &= \mu + \lambda_1^A + \lambda_j^D + \lambda_k^G + \lambda_{1j}^{AD} + \lambda_{jk}^{DG} \\
\log m_{2jk} &= \mu + \lambda_2^A + \lambda_j^D + \lambda_k^G + \lambda_{2j}^{AD} + \lambda_{jk}^{DG}
\end{align*}
\]

Thus, subtracting (1)-(2), terms not involving Admit will cancel:

\[
L_{jk} = \log m_{1jk} - \log m_{2jk} = \log\left(\frac{m_{1jk}}{m_{2jk}}\right) = \log \text{odds of admission}
\]

\[
= (\lambda_1^A - \lambda_2^A) + (\lambda_{1j}^{AD} - \lambda_{2j}^{AD})
\]

\[
= \alpha + \beta_j^{\text{Dept}} \quad \text{(renaming terms)}
\]

where, \(\alpha\): overall log odds of admission; \(\beta_j^{\text{Dept}}\): effect on admissions of department
Logit models

Other loglinear models have similar, simpler forms as logit models, where only the relations of the response to the predictors appear in the equivalent logit model.

- Admit \perp Gender \perp Dept (mutual independence $\equiv [A][D][G]$)
 \[
 \log m_{ijk} = \mu + \lambda^A_i + \lambda^D_j + \lambda^G_k \\
 \equiv L_{jk} = (\lambda^A_1 - \lambda^A_2) = \alpha \quad \text{(constant log odds)}
 \]

- Admit \perp Gender $|\text{Dept}$, except for Dept. A
 \[
 \log m_{ijk} = \mu + \lambda^A_i + \lambda^D_j + \lambda^G_k + \lambda^{AD}_{ij} + \lambda^{DG}_{jk} + \delta_{(j=1)} \lambda^{AG}_{ik} \\
 \equiv L_{jk} = \log(m_{1jk}/m_{2jk}) = \alpha + \beta^\text{Dept}_j + \delta_{(j=1)} \beta^\text{Gender}
 \]

where,

- β^Dept_j: effect on admissions for department j,
- $\delta_{(j=1)} \beta^\text{Gender}$: 1 df term for effect of gender in Dept. A.
Logit models

- Each logit model for a binary response, C is \equiv a loglinear model
- The loglinear model must include the $[AB]$ association of predictors
- When the response, C has $m > 2$ levels, models for generalized logits have equivalent loglinear form.

Table: Equivalent loglinear and logit models for a three-way table, with C as a binary response variable.

<table>
<thead>
<tr>
<th>Loglinear model</th>
<th>Logit model</th>
<th>Logit formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[AB][C]$</td>
<td>α</td>
<td>$C \sim 1$</td>
</tr>
<tr>
<td>$[AB][AC]$</td>
<td>$\alpha + \beta^A_i$</td>
<td>$C \sim A$</td>
</tr>
<tr>
<td>$[AB][BC]$</td>
<td>$\alpha + \beta^B_j$</td>
<td>$C \sim B$</td>
</tr>
<tr>
<td>$[AB][AC][BC]$</td>
<td>$\alpha + \beta^A_i + \beta^B_j$</td>
<td>$C \sim A + B$</td>
</tr>
<tr>
<td>$[ABC]$</td>
<td>$\alpha + \beta^A_i + \beta^B_j + \beta_{ij}^{AB}$</td>
<td>$C \sim A * B$</td>
</tr>
</tbody>
</table>
Example: Berkeley data—loglinear approach

Loglinear approach, using \texttt{MASS::loglm()}

- \textbf{Uses UCBAdmissions in table form}
- \textbf{Fit model of conditional independence of gender and admission given department, }$[AD][GD]$

\begin{verbatim}
library(MASS)
berk.loglm1 <- loglm(~ Dept * (Gender + Admit), data=UCBAdmissions)
berk.loglm1

Call:
loglm(formula = ~Dept * (Gender + Admit), data = UCBAdmissions)
##
Statistics:
X^2 df P(> X^2)
Likelihood Ratio 21.736 6 0.0013520
Pearson 19.938 6 0.0028402
\end{verbatim}
Example: Berkeley data—GLM approach

GLM approach, using \texttt{glm}()

- Convert \texttt{UCBAdmissions} to a frequency \texttt{data frame} form
- The frequency \texttt{Freq} will be used as the response variable

```r
berkeley <- as.data.frame(UCBAdmissions)
head(berkeley)
```

```
##       Admit Gender Dept Freq
## 1 Admitted Male A  512
## 2  Rejected Male A  313
## 3 Admitted Female A   89
## 4  Rejected Female A   19
## 5 Admitted  Male B  353
## 6  Rejected  Male B  207
```
Example: Berkeley data—GLM approach

GLM approach, using `glm()`

- Fit the same model of conditional independence, $[AD][GD]$
- This uses `family="poisson"` to give a model for $\log(Freq)$

```r
berk.glml <- glm(Freq ~ Dept * (Gender+Admit),
                  data=berkeley, family="poisson")
library(vcdExtra)
LRstats(berk.glml)
```

```
## Likelihood summary table:
## AIC  BIC  LR  Chisq  Df  Pr(>Chisq)
## berk.glml  217 238 21.7 6 0.0014  **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
library(vcdExtra)
mosaic(berk.glml, shade=TRUE, formula=~Admit+Dept+Gender, residuals_type="rstandard", labeling=labeling_residuals, main="Model: [AdmitDept][GenderDept]")
Example: Berkeley data—logit approach

Logit approach, using `glm()`

- The equivalent logit model is $L_{ij} = \alpha + \beta_i^{\text{Dept}} + \beta_j^{\text{Gender}}$
- Fit this with `glm()` using `Admit=="Admitted"` as the response, and `family=binomial`
- Need to specify `weights=Freq` with the data in frequency form

```r
berk.logit2 <- glm(Admit=="Admitted" ~ Dept + Gender,
data=berkeley, weights=Freq, family="binomial")
library(car)
Anova(berk.logit2)
```

```
## Analysis of Deviance Table (Type II tests)
##
## Response: Admit == "Admitted"
## LR Chisq Df Pr(>Chisq)
## Dept 763 5 <2e-16 ***
## Gender 2 1 0.22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
Plots for logit models

- Logit models are easier to interpret because there are fewer parameters
- Easiest to interpret from plots of the fitted log odds
- Get these using the `predict()` method for the model

```r
obs <- log(UCBAdmissions[,1,,] / UCBAdmissions[,2,,])
pred2 <- cbind(berkeley[,1:3], fit=predict(berk.logit2))
pred2 <- cbind(subset(pred2, Admit=="Admitted"), obs=as.vector(obs))
head(pred2)
#> # A tibble: 5 x 6
#>   #  Admit Gender Dept  fit  obs
#> 1 1  Admitted Male A 0.582 0.492
#> 2 3  Admitted Female A 0.682 1.544
#> 3 5  Admitted Male B 0.539 0.534
#> 4 7  Admitted Female B 0.639 0.754
#> 5 9  Admitted Male C -0.681 -0.536
```
Plots for logit models

- Large effects of Dept on admission
- Small effect of Gender (NS)
- Reason for lack of fit: Dept. A
A better model

Allow an association between *Admit* and *Gender* only in Dept. A

- **Loglinear form:**
 \[
 \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^D + \lambda_k^G + \lambda_{ij}^{AD} + \lambda_{jk}^{DG} + I(j = 1)\lambda_{ik}^{AG},
 \]

- **Equivalent logit form:**
 \[
 L_{ij} = \alpha + \beta_i^{Dept} + I(j = 1)\beta^{Gender}.
 \]

```r
berkeley <- within(berkeley,
  dept1AG <- (Dept=='A')*(Gender=='Female'))
berk.logit3 <- glm(Admit=='Admitted' ~ Dept + Gender + dept1AG,
  data=berkeley, weights=Freq, family="binomial")
Anova(berk.logit3)
## Analysis of Deviance Table (Type II tests)
##
## Response: Admit == "Admitted"
## LR Chisq Df Pr(>Chisq)
## Dept 647 5 < 2e-16 ***
## Gender 0 1 0.72
## dept1AG 18 1 2.7e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
Plots for logit models

- Large effects of Dept on admission
- No effect of Gender
- Perfect fit now in Dept. A
Loglinear models for ordinal variables

Ordinal variables reveal themselves in different ways in exploratory plots:

- With correspondence analysis, one large dimension accounting for most of the association
- With mosaic plots, an opposite-corner pattern of residuals
Advantages of ordinal models

- More focused tests \(\implies\) more powerful tests
- Consume fewer df \(\implies\) can fit unsaturated models in between [A][B] and [AB]
- Fit fewer parameters \(\implies\) easier interpretation
- Fit fewer parameters (usually) \(\implies\) smaller standard errors

These are similar to reasons for using

- Cochran-Mantel-Haenzel (CMH) tests
- Testing linear or polynomial trends/contrasts in ANOVA
Models for ordered categories

Consider an $R \times C$ table having ordered categories

- In many cases, the RC association may be described more simply by assigning numeric scores to the row & column categories.
- For simplicity, we consider only integer scores, 1, 2, … here.
- These models are easily extended to stratified tables.

<table>
<thead>
<tr>
<th>R:C model</th>
<th>μ_{ij}^{RC}</th>
<th>df</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform association</td>
<td>$i \times j \times \gamma$</td>
<td>1</td>
<td>$i:j$</td>
</tr>
<tr>
<td>Row effects</td>
<td>$a_i \times j$</td>
<td>$(l - 1)$</td>
<td>$R:j$</td>
</tr>
<tr>
<td>Col effects</td>
<td>$i \times b_j$</td>
<td>$(J - 1)$</td>
<td>$i:C$</td>
</tr>
<tr>
<td>Row+Col eff</td>
<td>$ja_i + ib_j$</td>
<td>$l + J - 3$</td>
<td>$R:j + i:C$</td>
</tr>
<tr>
<td>RC(1)</td>
<td>$\phi_i \psi_j \times \gamma$</td>
<td>$l + J - 3$</td>
<td>Mult(R, C)</td>
</tr>
<tr>
<td>Unstructured (R:C)</td>
<td>μ_{ij}^{RC}</td>
<td>$(l - 1)(J - 1)$</td>
<td>R:C</td>
</tr>
</tbody>
</table>
Linear x Linear Model (Uniform association)

- Assume linear ordering of both the row and column variables
- Assign scores (usually integers, 1, 2, ...)

\[a = \{ a_i \}, \quad a_1 \leq a_2 \leq \cdots a_l \]
\[b = \{ b_j \}, \quad b_1 \leq b_2 \leq \cdots b_J \]

- Then, the **linear-by-linear model** \((L \times L)\) model is:

\[
\log(m_{ij}) = \mu + \lambda^A_i + \lambda^B_j + \gamma a_i b_j .
\]

- The local odds ratios for adjacent \(2 \times 2\) tables are:

\[
\log(\theta_{ij}) = \gamma(a_{i+1} - a_i)(b_{j+1} - b_j) \quad \Rightarrow \quad \log(\theta_{ij}) = \gamma \text{ for integer scores}
\]

- Only one more parameter \((\gamma)\) than the independence model
- Independence model: special case, \(\gamma = 0\)
Row effects and column effects models: R, C, R+C

- In the **row effects model** (R), the row variable, A, is treated as nominal, but B is assigned scores

$$\log(m_{ij}) = \mu + \lambda^A_i + \lambda^B_j + \alpha_i b_j \ \forall \ \sum_i \alpha_i = 0 \text{ or } \alpha_1 = 0$$

- In the analogous **column effects model** (C), the row variable, A, is assigned scores, but B is nominal

- The **row plus column effects model** (R+C), assigns scores to both the rows and column variables.

$$\log(m_{ij}) = \mu + \lambda^A_i + \lambda^B_j + (\alpha_i b_j + a_i \beta_j)$$
Models for ordered categories

Nesting relationships among association models for ordinal variables

Any pair connected by an arrow path can be tested by a LR test of the form $\chi^2(M_2|M_1)$
Example: Mental Impairment & SES

Data on mental health status of NYC youth in relation to parents’ SES

```
(mental.tab <- xtabs(Freq ~ mental+ses, data=Mental))
```

```
##
##     ses
## mental 1  2  3  4  5  6
##   Well 64 57 57 72 36 21
##   Mild 94 94 105 141 97 71
## Moderate 58 54 65 77 54 54
## Impaired 46 40 60 94 78 71
```

Test the independence model:

```
indep <- glm(Freq ~ mental + ses, family = poisson, data = Mental)
vcdExtra::LRstats(indep)
```

```
## Likelihood summary table:
##            AIC  BIC   LR  Chisq  Df Pr(>Chisq)
## indep 210.0 220 47.4  3.2e-05 15   ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
Example: Mental impairment & SES

The mosaic shows the classic opposite-corner pattern for ordered factors.

- Standardized residuals (rstandard) have better statistical properties.
- Cells are labeled with residual values.

```r
mosaic(indep, gp=shading_Friendly, residuals_type="rstandard",
main="Mental health data: Independence")
```
Fitting ordinal models

To fit ordinal models, use \texttt{as.numeric()} on a factor variable to assign integer scores (or other numeric scores)

\begin{verbatim}
Cscore <- as.numeric(Mental$ses)
Rscore <- as.numeric(Mental$mental)
\end{verbatim}

Then, add the appropriate $L \times L$, R, or C terms to the independence model:

\begin{verbatim}
linlin <- update(indep, . ~ . + Rscore:Cscore)
roweff <- update(indep, . ~ . + mental:Cscore)
coleff <- update(indep, . ~ . + Rscore:ses)
\end{verbatim}
Comparing models

```r
LRstats(indep, linlin, roweff, coleff, sortby="AIC")
```

<table>
<thead>
<tr>
<th>Model</th>
<th>AIC</th>
<th>BIC</th>
<th>LR</th>
<th>Chisq</th>
<th>Df</th>
<th>Pr(>Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>indep</td>
<td>209.6</td>
<td>220.2</td>
<td>47.42</td>
<td>15</td>
<td>3.16e-05</td>
<td>***</td>
</tr>
<tr>
<td>coleff</td>
<td>179.0</td>
<td>195.5</td>
<td>6.83</td>
<td>10</td>
<td>0.741</td>
<td></td>
</tr>
<tr>
<td>roweff</td>
<td>174.4</td>
<td>188.6</td>
<td>6.28</td>
<td>12</td>
<td>0.901</td>
<td></td>
</tr>
<tr>
<td>linlin</td>
<td>174.1</td>
<td>185.8</td>
<td>9.90</td>
<td>14</td>
<td>0.770</td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

- All ordinal models are acceptable by LR tests
- The $L \times L$ model is judged the best by both AIC and BIC.
- This has only 1 more parameter than the independence model
Comparing models

When overall tests are unclear, you can carry out tests of nested sets of models using `anova()`, giving tests of ΔG^2. For example the `indep`, `linlin` and `roweff` models are one nested set:

```r
anova(indep, linlin, roweff, test="Chisq")
```

```
# Analysis of Deviance Table
#
# Model 1: Freq ~ mental + ses
# Model 2: Freq ~ mental + ses + Rscore:Cscore
# Model 3: Freq ~ mental + ses + mental:Cscore
# Resid. Df Resid. Dev Df Deviance Pr(>Chi)
# 1 15  47.4
# 2 14  9.9  1  37.5 9e-10 ***
# 3 12  6.3  2  3.6  0.16
#---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The $L \times L$ model is a signif. improvement; the R model is not.
Interpreting the $L \times L$ model

In the $L \times L$ model, the parameter γ is the constant local odds ratio:

```r
# interpret linlin association parameter
c coef(linlin)[["Rscore:Cscore"]]
```

```r
## [1] 0.090687
```

```r
exp(coef(linlin)[["Rscore:Cscore"]])
```

```r
## [1] 1.0949
```

- $\hat{\gamma} = 0.0907 \implies$ local odds ratio, $\hat{\theta}_{ij} = \exp(0.0907) = 1.095$.
- each step down the SES scale increases the odds of being classified one step poorer in mental health by 9.5%.
- a very simple interpretation of association!
Log-multiplicative (RC) models I

- The $L \times L$, R, and C models are all simpler to interpret than the saturated model.
- But, all depend on assigning fixed scores to the categories.
- The **row-and-column effects model** (RC(1)) makes these parameters

$$\log(m_{ij}) = \mu + \lambda^A_i + \lambda^B_j + \gamma \alpha_i \beta_j \quad \text{or, } \lambda_{ij}^{AB} = \gamma \alpha_i \beta_j$$

where γ, α and β comprise additional parameters to be estimated beyond the independence model.
- γ here is \sim to γ in the $L \times L$ model.
- The ordering and spacing of the categories is estimated from the data (as in CA).
- Requires some constraints to be identifiable: e.g., unweighted solution–

$$\sum_i \alpha_i = \sum_j \beta_j = 0$$

$$\sum_i \alpha_i^2 = \sum_j \beta_j^2 = 1$$
This generalizes to multiple bilinear terms, the RC(M) model

$$\lambda_{ij}^{AB} = \sum_{k=1}^{M} \gamma_k \alpha_i \beta_j$$

$$M = \min(I - 1, J - 1)$$

e.g., the RC(2) model has two bilinear terms (like a 2D CA solution)

$$\lambda_{ij}^{AB} = \gamma_1 \alpha_i \beta_j + \gamma_2 \alpha_i \beta_j$$

RC models are not loglinear—contain multiplicative terms
- Can’t use `glm()`
- The `gnm()` function in `gnm` fits a wide variety of such *generalized nonlinear models*
- The `rc()` function in `logmulf` uses `gnm()` and makes plotting easier.
Generalized nonlinear models

The `gnm` package provides fully general ways to specify nonlinear GLMs

- Basic nonlinear functions: `Exp()`, `Inv()`, `Mult()`
- The RC(1) model: `gnm(Freq ~ A + B + Mult(A,B))`
- The RC(2) model: `gnm(Freq ~ A + B + instances(Mult(A,B),2))`
- Models for mobility tables— the UNIDIFF model

\[
\log m_{ijk} = \alpha_{ik} + \beta_{jk} + \exp(\gamma_k)\delta_{ij}
\]

the exponentiated multiplier is specified as `Mult(Exp(C), A:B)`

- User-defined functions allow further extensions
Example: Mental impairment & SES
Fit the RC(1) and RC(2) models by adding terms using \texttt{Mult()} to the independence model

\begin{verbatim}
library(gnm)
indep <- gnm(Freq ~ mental + ses,
 \textbf{family} = poisson, \textbf{data} = Mental, \textbf{verbose}=FALSE)
RC1 <- update(indep, . ~ . + Mult(mental, ses))
RC2 <- update(indep, . ~ . + instances(Mult(mental, ses), 2))
\end{verbatim}

Compare models:

\begin{verbatim}
vcdExtra::LRstats(indep, linlin, roweff, coleff, RC1, RC2)
\end{verbatim}

\begin{verbatim}
Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)
indep 209.6 220.2 47.42 15 3.16e-05 ***
linlin 174.1 185.8 9.90 14 0.770
roweff 174.4 188.6 6.28 12 0.901
coleff 179.0 195.5 6.83 10 0.741
RC1 179.7 198.6 3.57 8 0.894
RC2 186.7 211.4 0.52 3 0.914

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\end{verbatim}
Comparing models

- Are estimated RC scores better than integer scores?
- If so, do we need more than one dimension?

```r
anova(linlin, RC1, RC2, test="Chisq")
```

```r
## Analysis of Deviance Table
##
## Model 1: Freq ~ mental + ses + Rscore:Cscore
## Model 2: Freq ~ mental + ses + Mult(mental, ses)
## Model 3: Freq ~ mental + ses + Mult(mental, ses, inst = 1) + Mult(mental, ses, inst = 2)
##
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 14 9.90
## 2 8 3.57 6 6.32 0.39
## 3 3 0.52 5 3.05 0.69
```
Visualizing RC scores

- The RC(1) model can be interpreted visually using a dotplot of the scaled category scores together with error bars.
- This allows you to see where this model differs from the $L \times L$ model with integer spacing.
Visualizing RC scores

- For the RC(2) model, plot the category scores for dim. 1 and 2
- The \texttt{logmult} package makes these plots much easier
- Also, provides bivariate confidence ellipses
Square tables

Square tables arise when the row and column variables have the same categories, often ordered.

Unaided distant vision data

Right Eye Grade

High

2

3

Low

Left Eye Grade

High

2

3

Low

Visual acuity data

Hauser social mobility data
Square tables: Models

In such cases, general association is a given, because of the diagonal cells. More interesting models concern associations in the off-diagonal cells.

- **Quasi-independence**: ignore the diagonal cells

 \[
 \log m_{ij} = \mu + \lambda_i^A + \lambda_j^B + \delta_i I(i = j).
 \]

 This model adds one parameter, \(\delta_i\), for each diagonal cell, which fits those frequencies perfectly.

- **Symmetry**: \(\pi_{ij} = \pi_{ji}\), but this implies marginal homogeneity,

 \[
 \pi_{i+} = \sum_j \pi_{ij} = \sum_j \pi_{ji} = \pi_{+i} \text{ for all } i.
 \]

- **Quasi-symmetry**:

 \[
 \log m_{ij} = \mu + \lambda_i^A + \lambda_j^B + \lambda_{ij}, \quad \lambda_{ij} = \lambda_{ji}
 \]

- It can be shown that

 \[
 \text{symmetry} = \text{quasi-symmetry} + \text{marginal homogeneity}
 \]

 \[
 G^2(S) = G^2(QS) + G^2(MH)
 \]
Square tables: Models

For these models, the essential idea is to construct factor levels corresponding to the unique parameters representing association

\[
\text{Diag}_{4 \times 4} = \begin{bmatrix}
1 & . & . & . \\
. & 2 & . & . \\
. & . & 3 & . \\
. & . & . & 4
\end{bmatrix} \quad \text{Symm}_{4 \times 4} = \begin{bmatrix}
11 & 12 & 13 & 14 \\
12 & 22 & 23 & 24 \\
13 & 23 & 33 & 34 \\
14 & 24 & 34 & 44
\end{bmatrix}
\]

More general **topological** models allow any arbitrary pattern:

\[
\text{Topo}_{4 \times 4} = \begin{bmatrix}
2 & 3 & 4 & 4 \\
3 & 3 & 4 & 4 \\
4 & 4 & 5 & 5 \\
4 & 4 & 5 & 1
\end{bmatrix}
\]
Square tables: Using gnm

Some models for structured associations in square tables:

- quasi-independence (ignore diagonals)

 \[
 \text{gnm}(\text{Freq} \sim \text{row} + \text{col} + \text{Diag}(\text{row, col}), \text{family}=\text{poisson})
 \]

- symmetry \((\lambda_{ij}^{RC} = \lambda_{ji}^{RC}) \)

 \[
 \text{gnm}(\text{Freq} \sim \text{Symm}(\text{row, col}), \text{family}=\text{poisson})
 \]

- quasi-symmetry = quasi + symmetry

 \[
 \text{gnm}(\text{Freq} \sim \text{row} + \text{col} + \text{Symm}(\text{row, col}), \text{family}=\text{poisson})
 \]

- fully-specified “topological” association patterns

 \[
 \text{gnm}(\text{Freq} \sim \text{row} + \text{col} + \text{Topo}(\text{row, col, spec}=\text{RCmatrix}), \ldots)
 \]

All of these are actually GLMs, but the \text{gnm} package provides convenience functions \text{Diag}, \text{Symm}, and \text{Topo} to facilitate model specification.
Example: Visual acuity

data("VisualAcuity", package="vcd")
women <- subset(VisualAcuity, gender=="female", select=-gender)

The diagonal cells clearly dominate
What associations remain, ignoring these?
Is there evidence for quasi-symmetry?
Example: Visual acuity—fitting models

```r
indep <- glm(Freq ~ right + left, data = women, family = poisson)
quasi <- update(indep, . ~ . + Diag(right, left))

symm <- glm(Freq ~ Symm(right, left), data = women, family = poisson)
qsymm <- update(symm, . ~ right + left + .)
```

The QS model fits reasonably well, but none of the others do by likelihood-ratio tests or AIC or BIC.

```r
vcdExtra::LRstats(indep, quasi, symm, qsymm)
```

```
## Likelihood summary table:
## AIC  BIC   LR Chisq Df   Pr(>Chisq)
## indep 6803 6808 6672  9 <2e-16 ***
## quasi 338  347  199  5 <2e-16 ***
## symm  157  164  199  6 0.0038 **
## qsymm 151  161   7  3  0.0638 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
Example: Visual acuity—visualizing model fit

<table>
<thead>
<tr>
<th>Quasi-Independence (women)</th>
<th>Quasi-Symmetry (women)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left eye grade</td>
<td>Left eye grade</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3 Low</td>
<td>3 Low</td>
</tr>
<tr>
<td>Right eye grade</td>
<td>Right eye grade</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rstandard</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-9.7</td>
<td></td>
</tr>
<tr>
<td>-4.0</td>
<td></td>
</tr>
<tr>
<td>-2.0</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td></td>
</tr>
</tbody>
</table>

Quasi-Independence (women)

Quasi-Symmetry (women)

Legend:
- Blue: High
- Red: Low
- Pink: Moderate

Legend:
- Blue: High
- Red: Low
- Pink: Moderate

Legend:
- Blue: High
- Red: Low
- Pink: Moderate

Legend:
- Blue: High
- Red: Low
- Pink: Moderate

Legend:
- Blue: High
- Red: Low
- Pink: Moderate
More complex models

Extensions of these methods arise in a variety of contexts:
- Panel surveys, where given attitude items are analyzed over time and space
- Social mobility data, where occupational status of parents and children may admit subtly different models
- Migration data, where geographical and political factors require some special treatment (e.g., mover-stayer models)

These often involve:
- ordinal variables: support for abortion, occupational status
- square tables: husbands/wives, fathers/sons, ...
- strata or layers to control for other factors or analyze change over time or differences over geography
More complex models

For example, the **log-multiplicative uniform difference** (UNIDIFF) model, for factors R, C, with layer variable L:

\[
\log m_{ijk} = \mu + \lambda_i^R + \lambda_j^C + \lambda_k^L + \lambda_{ik}^{RL} + \lambda_{jk}^{CL} + \gamma_k \delta_{ij}^{RC}
\]

- The term for the three-way association [RCL] pertains to how the [RC] association varies with layer (L).
- The UNIDIFF model says there is a multiplier \(\gamma_k\) for a common \(\delta_{ij}^{RC}\) association.
- Special cases: R, C, RC(1) models for the [RC] association;
- Special cases: homogeneous associations \((\gamma_k = 0)\) for layers.

gnm() notation uses \(\text{Exp}(L)\), so layer effects are on a log scale.
- The **logmult** package provides a **unidiff()** function that makes this easier.
Models for stratified mobility tables

Baseline models:
- Perfect mobility: \(Freq \sim (R+C) \times L \)
- Quasi-perfect mobility: \(Freq \sim (R+C) \times L + \text{Diag}(R, C) \)

Layer models:
- Homogeneous: no layer effects—\(\gamma_k = 0 \)
- Heterogeneous: e.g., \(\mu_{ijk}^{RCL} = \exp(\gamma_k^L) \delta_{ij}^{RC} \)

Extended models: Baseline \(\oplus \) Layer model (R:C model)

<table>
<thead>
<tr>
<th>R:C model</th>
<th>Homogeneous</th>
<th>Layer model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row effects</td>
<td>(~.+ R:j)</td>
<td>(~.+ \text{Mult}(R:j, \text{Exp}(L)))</td>
</tr>
<tr>
<td>Col effects</td>
<td>(~.+ i:C)</td>
<td>(~.+ \text{Mult}(i:C, \text{Exp}(L)))</td>
</tr>
<tr>
<td>Row+Col eff</td>
<td>(~.+ R:j + i:C)</td>
<td>(~.+ \text{Mult}(R:j + i:C, \text{Exp}(L)))</td>
</tr>
<tr>
<td>RC(1)</td>
<td>(~.+ \text{Mult}(R, C))</td>
<td>(~.+ \text{Mult}(R, C, \text{Exp}(L)))</td>
</tr>
<tr>
<td>Full R:C</td>
<td>(~.+ R:C)</td>
<td>(~.+ \text{Mult}(R:C, \text{Exp}(L)))</td>
</tr>
</tbody>
</table>
Example: Social mobility in US, UK & Japan

Yama.tab <- xtabs(Freq ~ Father + Son + Country, data=Yamaguchi87)
structable(Country+Son~Father, Yama.tab[,,1:2])

<table>
<thead>
<tr>
<th>##</th>
<th>Country</th>
<th>US</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>##</td>
<td>Son</td>
<td>UpNM</td>
<td>LoNM</td>
</tr>
<tr>
<td>##</td>
<td>Father</td>
<td></td>
<td></td>
</tr>
<tr>
<td>##</td>
<td>UpNM</td>
<td>1275</td>
<td>364</td>
</tr>
<tr>
<td>##</td>
<td>LoNM</td>
<td>1055</td>
<td>597</td>
</tr>
<tr>
<td>##</td>
<td>UpM</td>
<td>1043</td>
<td>587</td>
</tr>
<tr>
<td>##</td>
<td>LoM</td>
<td>1159</td>
<td>791</td>
</tr>
<tr>
<td>##</td>
<td>Farm</td>
<td>666</td>
<td>496</td>
</tr>
</tbody>
</table>

Questions:

- Is occupational mobility the same for all countries?
- If not, how do they differ?
- Are there simple models that describe mobility?

See: demo("yamaguchi-xie", package="vcdExtra")
First thought: try MCA

```
library(ca)
Yama.dft <- expand.dft(Yamaguchi87)
yama.mjca <- mjca(Yama.dft)
plot(yama.mjca, what=c("none","all"))
```

Dimensions seem to have reasonable interpretations
Farm differs from others
All sons seem to move up!
But, how do dims relate to theories of social mobility?
How to understand Country effects?
Yamaguchi data: Baseline models
Minimal, null model asserts Father \perp Son $|\text{Country}$

```r
yamaNull <- gnm(Freq ~ (Father + Son) * Country, data = Yamaguchi87, family = poisson)
mosaic(yamaNull, ~Country + Son + Father, condvars = "Country", ...)
```

[FC][SC] Null [FS] association (perfect mobility)
Yamaguchi data: Baseline models

But, for better theory \Rightarrow ignore diagonal cells

```r
yamaDiag <- update(yamaNull, ~. + Diag(Father, Son):Country)
mosaic(yamaDiag, ~Country + Son + Father, condvars = "Country", ...)
```

[FC][SC] Quasi perfect mobility, +Diag(F,S)
Models for homogeneous association

gnm makes it easy to fit collections of models, with simple `update()` methods.

```r
Rsco <- as.numeric(Yamaguchi87$Father)
Cscore <- as.numeric(Yamaguchi87$Son)

yamaRo <- update(yamaDiag, ~ . + Father:Cscore)
yamaCo <- update(yamaDiag, ~ . + Rscore:Son)
yamaRpCo <- update(yamaDiag, ~ . + Father:Cscore + Rscore:Son)
yamaRCo <- update(yamaDiag, ~ . + Mult(Father, Son))
yamaFIo <- update(yamaDiag, ~ . + Father:Son)
```
Models for heterogeneous association

Can combine these with models allowing layer effects
Log-multiplicative (UNIDIFF) models:

\[
yamaRx \leftarrow \text{update}(yamaDiag, \sim . + \text{Mult}(\text{Father}:\text{Cscore}, \text{Exp}(\text{Country})))
\]
\[
yamaCx \leftarrow \text{update}(yamaDiag, \sim . + \text{Mult}(\text{Rscore}:\text{Son}, \text{Exp}(\text{Country})))
\]
\[
yamaRpCx \leftarrow \text{update}(yamaDiag, \sim . + \text{Mult}(\text{Father}:\text{Cscore} + \text{Rscore}:\text{Son}, \text{Exp}(\text{Country})))
\]
\[
yamaRCx \leftarrow \text{update}(yamaDiag, \sim . + \text{Mult}(\text{Father}:\text{Son}, \text{Exp}(\text{Country})))
\]
\[
yamaFIx \leftarrow \text{update}(yamaDiag, \sim . + \text{Mult}(\text{Father}:\text{Son}, \text{Exp}(\text{Country})))
\]

GNM model methods:
- **Summary methods**: `print(model), summary(model),...`
- **Extractor methods**: `coef(model), residuals(model),...`

Visualization:
- **Diagnostics**: `plot(model)`
- **Mosaics, etc**: `mosaic(model)`
Yamaguchi data: Comparing models

`LRstats()` and related methods facilitate model comparison

```r
models <- glmlist(yamaNull, yamaDiag,
                   yamaRo, yamaRx, yamaCo, yamaCx, yamaRpCo,
                   yamaRpCx, yamaRCo, yamaRCx, yamaFIo, yamaFIx)
LRstats(models)
```

```
## Likelihood summary table:
##     AIC   BIC   LR Chisq Df Pr(>Chisq)
## yamaNull 6168  6231 5592  48 < 2e-16 ***
## yamaDiag 1943  2040 1336  33 < 2e-16 ***
## yamaRo    771   877  156  29 < 2e-16 ***
## yamaRx    766   877  148  27 < 2e-16 ***
## yamaCo    682   789   68  29  6.1e-05 ***
## yamaCx    677   789   59  27  0.00038 ***
## yamaRpCo  659   773   39  26  0.05089 .
## yamaRpCx  658   776   33  24  0.10341
## yamaRCo   658   772   38  26  0.06423 .
## yamaRCx   657   775   32  24  0.12399
## yamaFIo   665   788   36  22  0.02878 *
## yamaFIx   664   791   31  20  0.05599 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
Yamaguchi data: Comparing models

LRstats() and related methods facilitate model comparison

BIC ← matrix(LRstats(models)$BIC[-(1:2)], 5, 2, byrow=TRUE)

Homogeneous models all preferred by BIC
(Xie preferred heterogeneous models)
Little difference among Col, Row+Col and RC(1) models
⇒ \(R:C \) association \(\sim \) Row scores (Father’s status)
Yamaguchi data: Comparing models

LRstats() and related methods facilitate model comparison

AIC <- matrix(LRstats(models)$AIC[-(1:2)], 5, 2, byrow=TRUE)

- AIC prefers heterogeneous models
- Row+Col and RC(1) model fit best
- Father’s status estimates
- Model summary plots provide sensitive comparisons!
Yamaguchi data: Interpreting associations

`unidiff()` in `logmult` uses `gnm()`, but makes summaries and plotting easier

```r
library(logmult)
yamaUni <- unidiff(Yama.tab)
```

```
yamaUni

## Call:
## unidiff(tab = Yama.tab)
##
## ## Layer coefficients:
## US    UK  Japan
## 1.000 1.206 0.931
##
## Layer intrinsic association coefficients:
## US    UK  Japan
## 0.412 0.600 0.357
##
## Full two-way interaction coefficients:
## Son
## Father UpNM LoNM UpM LoM Farm
## UpNM 1.0063 0.3024 -0.4399 -0.6048 -0.4394...
```
Yamaguchi data: Interpreting associations

Plotting the "unidiff" object plots the layer coefficients

```r
plot(yamaUni, cex=2, col="red", pch=16)
```

Father – Son occupational association is ordered $UK > US > Japan$
Yamaguchi data: Visualizing associations

The common association parameters, δ_{ij}^{RC}, are contained in the "unidiff" object

```r
inter <- yamaUni$unidiff$interaction
inter.mat <- matrix(inter$Estimate, 5, 5,
                     dimnames=dimnames(Yama.tab)[1:2])
inter.mat
```

```
## Son
## Father  UpNM  LoNM  UpM  LoM  Farm
## UpNM    1.0063 0.3024 -0.4399 -0.6048 -0.439
## LoNM    0.4644 0.5228 -0.2547 -0.3856 -0.512
## UpM     0.0214 -0.0268 0.2557 -0.0972 -0.583
## LoM    -0.2056 -0.1028 0.0891 0.2632 -0.650
## Farm   -0.5320 -0.3026 0.0101 0.2592 2.075
```
Yamaguchi data: Visualizing associations
Plot these as a shaded-square plot using \texttt{corrplot()}

\begin{verbatim}
library(corrplot)
corrplot(inter.mat, method="square", is.corr=FALSE, ...)
\end{verbatim}
Yamaguchi data: Visualizing associations

Plot these as a line plot using \texttt{matplot()}:

\begin{verbatim}
\texttt{matplot(t(inter.mat), type="b", pch=15:19, cex=1.2, xaxt="n", xlab="Father's status", ylab="Association estimate")}
\end{verbatim}
Loglinear models, as originally formulated, were very general, but treated all table variables as unordered factors

- The GLM perspective is more general still, allowing quantitative predictors and handling ordinal factors
- The logit model perspective gives a simplified approach when one variable is a response

Models for ordered factors give more powerful and focused tests

- $L \times L$, R, C and R+C models assign scores to the factors
- RC(1), RC(2), ... models estimate the scores from the data

Models for square tables provide ways of testing more subtle questions

- quasi-independence: ignoring diagonals
- symmetry and quasi-symmetry
- theory-specific “topological” association patterns

These methods can readily be combined to analyze complex tables