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Model building Donner Party

Donner Party: A graphic tale of survival & influence
History:

Apr–May, 1846: Donner/Reed families set out from Springfield, IL to CA
Jul: Bridger’s Fort, WY, 87 people, 23 wagons
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Model building Donner Party

Donner Party: A graphic tale of survival & influence
History:

“Hasting’s Cutoff”, untried route through Salt Lake Desert, Wasatch Mtns.
(90 people)
Worst recorded winter: Oct 31 blizzard— Missed by 1 day, stranded at
“Truckee Lake” (now Donner’s Lake, Reno)

Rescue parties sent out (“Dire necessity”, “Forelorn hope”, ...)
Relief parties from CA: 42 survivors (Mar–Apr, ’47)
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Model building Donner Party

Donner Party: Data

data("Donner", package="vcdExtra")
Donner$survived <- factor(Donner$survived, labels=c("no", "yes"))

library(car)
some(Donner, 12)

## family age sex survived death
## Breen, Peter Breen 3 Male yes <NA>
## Donner, George Donner 62 Male no 1847-03-18
## Donner, Jacob Donner 65 Male no 1846-12-21
## Foster, Jeremiah MurFosPik 1 Male no 1847-03-13
## Graves, Jonathan Graves 7 Male yes <NA>
## Graves, Mary Ann Graves 20 Female yes <NA>
## Graves, Nancy Graves 9 Female yes <NA>
## McCutchen, Harriet McCutchen 1 Female no 1847-02-02
## Reed, James Reed 46 Male yes <NA>
## Reed, Thomas Keyes Reed 4 Male yes <NA>
## Reinhardt, Joseph Other 30 Male no 1846-12-21
## Wolfinger, Doris FosdWolf 20 Female yes <NA>
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Model building Exploratory plots

Exploratory plots

●

●
●

●

●

● ●

●●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●●●●

●

●

●

● ● ●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●●

●

●

●

●●

●

●

●

●
●●

●
● ●

●

●

●●

●
0.00

0.25

0.50

0.75

1.00

0 20 40 60
age

S
ur

vi
ve

d

sex

●

●

Female

Male

Survival decreases with age for
both men and women
Women more likely to survive,
particularly the young
Data is thin at older ages

5 / 53



Model building Exploratory plots

Using ggplot2

Basic plot: survived vs. age, colored by sex, with jittered points

gg <- ggplot(Donner,
aes(age, as.numeric(survived=="yes"), color = sex)) +

ylab("Survived") +
geom_point(position = position_jitter(height = 0.02, width = 0))

Add conditional linear logistic regressions with
stat smooth(method="glm")

gg + stat_smooth(method = "glm", family = binomial, formula = y ˜ x,
alpha = 0.2, size=2, aes(fill = sex))
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Model building Exploratory plots

Questions

Is the relation of survival to age well expressed as a linear logistic
regression model?

Allow a quadratic or higher power, using poly(age,2), poly(age,3),

logit(πi) = α+ β1xi + β2x2
i

logit(πi) = α+ β1xi + β2x2
i + β3x3

i

. . .

Use natural spline functions, ns(age, df)
Use non-parametric smooths, loess(age, span, degree)

Is the relation the same for men and women? i.e., do we need an
interaction of age and sex?

Allow an interaction of sex * age or sex * f(age)
Test goodness-of-fit relative to the main effects model
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Model building Exploratory plots

gg + stat_smooth(method = "glm", family = binomial,
formula = y ˜ poly(x,2),
alpha = 0.2, size=2, aes(fill = sex))
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Model building Exploratory plots

gg + stat_smooth(method = "loess", span=0.9,
alpha = 0.2, size=2,
aes(fill = sex)) + coord_cartesian(ylim=c(-.05,1.05))
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Model building Exploratory plots

Fitting models

Models with linear effect of age:

donner.mod1 <- glm(survived ˜ age + sex,
data=Donner, family=binomial)

donner.mod2 <- glm(survived ˜ age * sex,
data=Donner, family=binomial)

Anova(donner.mod2)

## Analysis of Deviance Table (Type II tests)
##
## Response: survived
## LR Chisq Df Pr(>Chisq)
## age 5.52 1 0.0188 *
## sex 6.73 1 0.0095 **
## age:sex 0.40 1 0.5269
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Model building Exploratory plots

Fiting models

Models with quadratic effect of age:

donner.mod3 <- glm(survived ˜ poly(age,2) + sex,
data=Donner, family=binomial)

donner.mod4 <- glm(survived ˜ poly(age,2) * sex,
data=Donner, family=binomial)

Anova(donner.mod4)

## Analysis of Deviance Table (Type II tests)
##
## Response: survived
## LR Chisq Df Pr(>Chisq)
## poly(age, 2) 9.91 2 0.0070 **
## sex 8.09 1 0.0044 **
## poly(age, 2):sex 8.93 2 0.0115 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Model building Exploratory plots

Comparing models

library(vcdExtra)
LRstats(donner.mod1, donner.mod2, donner.mod3, donner.mod4)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## donner.mod1 117 125 111.1 87 0.042 *
## donner.mod2 119 129 110.7 86 0.038 *
## donner.mod3 115 125 106.7 86 0.064 .
## donner.mod4 110 125 97.8 84 0.144
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linear non-linear ∆χ2 p-value
additive 111.128 106.731 4.396 0.036
non-additive 110.727 97.799 12.928 0.000
∆χ2 0.400 8.932
p-value 0.527 0.003
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Model building Influence

Who was influential?

library(car)
res <- influencePlot(donner.mod3, id.col="blue", scale=8, id.n=2)
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Model building Influence

Why are they influential?

idx <- which(rownames(Donner) %in% rownames(res))
# show data together with diagnostics
cbind(Donner[idx,2:4], res)

## age sex survived StudRes Hat CookD
## Breen, Patrick 51 Male yes 2.501 0.09148 0.5688
## Donner, Elizabeth 45 Female no -1.114 0.13541 0.1846
## Graves, Elizabeth C. 47 Female no -1.019 0.16322 0.1849
## Reed, James 46 Male yes 2.098 0.08162 0.3790

Patrick Breen, James Reed: Older men who survived
Elizabeth Donner, Elizabeth Graves: Older women who survived
Moral lessons of this story:

Don’t try to cross the Donner Pass in late October; if you do, bring lots of
food
Plots of fitted models show only what is included in the model
Discrete data often need smoothing (or non-linear terms) to see the pattern
Always examine model diagnostics — preferably graphic
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Polytomous response models Overview

Polytomous responses: Overview
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Polytomous response models Overview

Polytomous responses: Overview

m categories→ (m − 1) comparisons (logits)
One part of the model for each logit
Similar to ANOVA where an m-level factor→ (m − 1) contrasts (df)

Response categories unordered , e.g., vote NDP, Liberal, Green, Tory
Multinomial logistic regression

Fits m− 1 logistic models for logits of category i = 1, 2, . . .m− 1 vs. category m

e.g.,

NDP Tory

Liberal Tory

Green Tory
This is the most general approach
R: multinom() function in nnet

Can also use nested dichotomies
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Polytomous response models Overview

Polytomous responses: Overview

Response categories ordered , e.g., None, Some, Marked improvement

Proportional odds model

Uses adjacent-category logits
None Some or Marked

None or Some Marked
Assumes slopes are equal for all m − 1 logits; only intercepts vary
R: polr() in MASS

Nested dichotomies
None Some or Marked

Some Marked
Model each logit separately
G2 s are additive→ combined model
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Polytomous response models Overview

Fitting and graphing: Overview

R:
Model objects contain all necessary information for plotting
Basic diagnostic plots with plot(model)
Fitted values with predict(); customize with points(), lines(), etc.
Effect plots most general
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Proportional odds model

Ordinal response: Proportional odds model

Arthritis treatment data:
Improvement

Sex Treatment None Some Marked Total
--- --------- --------------------- -----
F Active 6 5 16 27
F Placebo 19 7 6 32

M Active 7 2 5 14
M Placebo 10 0 1 11

Model logits for adjacent category cutpoints:

logit (θij1) = log
πij1

πij2 + πij3
= logit ( None vs. [Some or Marked] )

logit (θij2) = log
πij1 + πij2

πij3
= logit ( [None or Some] vs. Marked)
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Proportional odds model

Consider a logistic regression model for each logit:

logit(θij1) = α1 + x ′ij β1 None vs. Some/Marked

logit(θij2) = α2 + x ′ij β2 None/Some vs. Marked

Proportional odds assumption: regression functions are parallel on the
logit scale i.e., β1 = β2.
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Proportional odds model Latent variable interpretation

Proportional odds: Latent variable interpretation
A simple motivation for the proportional odds model:

Imagine a continuous, but unobserved response, ξ, a linear function of
predictors

ξi = βTxi + εi

The observed response, Y, is discrete, according to some unknown
thresholds, α1 < α2, < · · · < αm−1

That is, the response, Y = i if αi ≤ ξi < αi+1

Thus, intercepts in the proportional odds model ∼ thresholds on ξ
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Proportional odds model Latent variable interpretation

Proportional odds: Latent variable interpretation

We can visualize the relation of the latent variable ξ to the observed response
Y , for two values, x1 and x2, of a single predictor, X as shown below:

x

x1 x2

α1

α2

α3

ξ Y

1
2

3

4

Pr(Y = 4|x1) Pr(Y = 4|x2)

E(ξ) = α + βx
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Proportional odds model Latent variable interpretation

Proportional odds: Latent variable interpretation
For the Arthritis data, the relation of improvement to age is shown below
(using the effects package)

Arthritis data: Age effect, latent variable scale
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Proportional odds model Fitting in R

Proportional odds models in R

Fitting: polr() in MASS package
The response, Improved has been defined as an ordered factor

data(Arthritis, package="vcd")
head(Arthritis$Improved)

## [1] Some None None Marked Marked Marked
## Levels: None < Some < Marked

Fitting:

library(MASS) # for polr()
library(car) # for Anova()

arth.polr <- polr(Improved ˜ Sex + Treatment + Age,
data=Arthritis)

summary(arth.polr)
Anova(arth.polr) # Type II tests
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The summary() function gives standard statistical results:

> summary(arth.polr)

Call:
polr(formula = Improved ˜ Sex + Treatment + Age, data = Arthritis)

Coefficients:
Value Std. Error t value

SexMale -1.25168 0.54636 -2.2909
TreatmentTreated 1.74529 0.47589 3.6674
Age 0.03816 0.01842 2.0722

Intercepts:
Value Std. Error t value

None|Some 2.5319 1.0571 2.3952
Some|Marked 3.4309 1.0912 3.1442

Residual Deviance: 145.4579
AIC: 155.4579



The car::Anova() function gives hypothesis tests for model terms:

> Anova(arth.polr) # Type II tests

Anova Table (Type II tests)

Response: Improved
LR Chisq Df Pr(>Chisq)

Sex 5.6880 1 0.0170812 *
Treatment 14.7095 1 0.0001254 ***
Age 4.5715 1 0.0325081 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova() gives Type I (sequential) tests — not usually useful
Type II (partial) tests control for the effects of all other terms



Proportional odds model Testing the PO assumption

Testing the proportional odds assumption

The PO model is valid only when the slopes are equal for all predictors
This can be tested by comparing this model to the generalized logit NPO
model

PO : Lj = αj + xTβ j = 1, . . . ,m − 1 (1)

NPO : Lj = αj + xTβj j = 1, . . . ,m − 1 (2)

A likelihood ratio test requires fitting both models calculating
∆G2 = G2

NPO −G2
PO with p df.

This can be done using vglm() in the VGAM package
The rms package provides a visual assessment, plotting the conditional
mean E(X |Y ) of a given predictor, X , at each level of the ordered
response Y .
If the response behaves ordinally in relation to X , these means should be
strictly increasing or decreasing with Y .

27 / 53



Proportional odds model Testing the PO assumption

Testing the proportional odds assumption
In VGAM, the PO model is fit using family =
cumulative(parallel=TRUE)

library(VGAM)
arth.po <- vglm(Improved ˜ Sex + Treatment + Age, data=Arthritis,

family = cumulative(parallel=TRUE))

The more general NPO model can be fit using parallel=FALSE.

arth.npo <- vglm(Improved ˜ Sex + Treatment + Age, data=Arthritis,
family = cumulative(parallel=FALSE))

The LR test says the PO model is OK:

VGAM::lrtest(arth.npo, arth.po)

## Likelihood ratio test
##
## Model 1: Improved ˜ Sex + Treatment + Age
## Model 2: Improved ˜ Sex + Treatment + Age
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 160 -71.8
## 2 163 -72.7 3 1.88 0.6
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Proportional odds model Plotting

Full-model plot of predicted probabilities:
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29 / 53



Proportional odds model Plotting

Proportional odds models in R: Plotting

Plotting: plot(effect()) in effects package

> library(effects)
> plot(effect("Treatment:Age", arth.polr))

The default plot shows all details
But, is harder to compare across
treatment and response levels
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Proportional odds model Plotting

Proportional odds models in R: Plotting
Making visual comparisons easier:
> plot(effect("Treatment:Age", arth.polr), style='stacked')

Treatment*Age effect plot
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Proportional odds model Plotting

Proportional odds models in R: Plotting
Making visual comparisons easier:
> plot(effect("Sex:Age", arth.polr), style='stacked')

Sex*Age effect plot
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Proportional odds model Plotting

Proportional odds models in R: Plotting
These plots are even simpler on the logit scale, using latent=TRUE to show
the cutpoints between response categories
> plot(effect("Treatment:Age", arth.polr, latent=TRUE))

Treatment*Age effect plot
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Nested dichotomies Basic ideas

Polytomous response: Nested dichotomies
m categories→ (m − 1) comparisons (logits)
If these are formulated as (m − 1) nested dichotomies:

Each dichotomy can be fit using the familiar binary-response logistic model,
the m − 1 models will be statistically independent (G2 statistics will be
additive)
(Need some extra work to summarize these as a single, combined model)

This allows the slopes to differ for each logit
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Nested dichotomies Basic ideas

Nested dichotomies: Examples
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Nested dichotomies Example

Example: Women’s Labour-Force Participation

Data: Social Change in Canada Project , York ISR, car::Womenlf data
Response: not working outside the home (n=155), working part-time
(n=42) or working full-time (n=66)
Model as two nested dichotomies:

Working (n=106) vs. NotWorking (n=155)
Working full-time (n=66) vs. working part-time (n=42).

L1: not working part-time, full-time

L2: part-time full-time

Predictors:
Children? — 1 or more minor-aged children
Husband’s Income — in $1000s
Region of Canada (not considered here)
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Nested dichotomies Example

Nested dichotomoies: Combined tests
Nested dichotomies→ χ2 tests and df for the separate logits are
independent
→ add, to give tests for the full m-level response (manually)

Global tests of BETA=0
Prob

Test Response ChiSq DF ChiSq

Likelihood Ratio working 36.4184 2 <.0001
fulltime 39.8468 2 <.0001
ALL 76.2652 4 <.0001

Wald tests for each coefficient:
Wald tests of maximum likelihood estimates

Prob
Variable Response WaldChiSq DF ChiSq

Intercept working 12.1164 1 0.0005
fulltime 20.5536 1 <.0001
ALL 32.6700 2 <.0001

children working 29.0650 1 <.0001
fulltime 24.0134 1 <.0001
ALL 53.0784 2 <.0001

husinc working 4.5750 1 0.0324
fulltime 7.5062 1 0.0061
ALL 12.0813 2 0.0024
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Nested dichotomies Example

Nested dichotomies: recoding

In R, first create new variables, working and fulltime, using the
recode() function in the car:
> library(car) # for data and Anova()
> data(Womenlf)
> Womenlf <- within(Womenlf,{
+ working <- recode(partic, " 'not.work' = 'no'; else = 'yes' ")
+ fulltime <- recode (partic,
+ " 'fulltime' = 'yes'; 'parttime' = 'no'; 'not.work' = NA")})
> some(Womenlf)

partic hincome children region fulltime working
31 not.work 13 present Ontario <NA> no
34 not.work 9 absent Ontario <NA> no
55 parttime 9 present Atlantic no yes
86 fulltime 27 absent BC yes yes
96 not.work 17 present Ontario <NA> no
141 not.work 14 present Ontario <NA> no
180 fulltime 13 absent BC yes yes
189 fulltime 9 present Atlantic yes yes
234 fulltime 5 absent Quebec yes yes
240 not.work 13 present Quebec <NA> no
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Nested dichotomies Fitting

Nested dichotomies: fitting

Then, fit models for each dichotomy:
> contrasts(children)<- 'contr.treatment'
> mod.working <- glm(working ˜ hincome + children, family=binomial, data=Womenlf)
> mod.fulltime <- glm(fulltime ˜ hincome + children, family=binomial, data=Womenlf)

Some output from summary(mod.working):
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.33583 0.38376 3.481 0.0005 ***
hincome -0.04231 0.01978 -2.139 0.0324 *
childrenpresent -1.57565 0.29226 -5.391 7e-08 ***

Some output from summary(mod.fulltime):
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.47777 0.76711 4.534 5.80e-06 ***
hincome -0.10727 0.03915 -2.740 0.00615 **
childrenpresent -2.65146 0.54108 -4.900 9.57e-07 ***
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Nested dichotomies Fitting

Nested dichotomies: interpretation
Write out the predictions for the two logits, and compare coefficients:

log
(

Pr(working)

Pr(not working)

)
= 1.336− 0.042 H$− 1.576 kids

log
(

Pr(fulltime)

Pr(parttime)

)
= 3.478− 0.107 H$− 2.652 kids

Better yet, plot the predicted log odds for these equations:
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Nested dichotomies Plotting

Nested dichotomies: plotting

For plotting, calculate the predicted probabilities (or logits) over a grid of
combinations of the predictors in each sub-model, using the predict()
function.
type=’response’ gives these on the probability scale, whereas
type=’link’ (the default) gives these on the logit scale.
> pred <- expand.grid(hincome=1:45, children=c('absent', 'present'))
> # get fitted values for both sub-models
> p.work <- predict(mod.working, pred, type='response')
> p.fulltime <- predict(mod.fulltime, pred, type='response')

The fitted value for the fulltime dichotomy is conditional on working outside the
home; multiplying by the probability of working gives the unconditional
probability.
> p.full <- p.work * p.fulltime
> p.part <- p.work * (1 - p.fulltime)
> p.not <- 1 - p.work
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Nested dichotomies Plotting

Nested dichotomies in R: plotting
The plot below was produced using the basic R functions plot(), lines()
and legend(). See the file wlf-nested.R on the course web page for
details.
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Generalized logit models Basic ideas

Polytomous response: Generalized Logits
Models the probabilities of the m response categories as m − 1 logits
comparing each of the first m − 1 categories to the last (reference)
category.
Logits for any pair of categories can be calculated from the m − 1 fitted
ones.
With k predictors, x1, x2, . . . , xk , for j = 1,2, . . . ,m − 1,

Ljm ≡ log
(
πij

πim

)
= β0j + β1j xi1 + β2j xi2 + · · ·+ βkj xik

= βT
j xi

One set of fitted coefficients, βj for each response category except the last.
Each coefficient, βhj , gives the effect on the log odds of a unit change in the
predictor xh that an observation belongs to category j vs. category m.

Probabilities in response caegories are calculated as:

πij =
exp(βT

j xi )∑m−1
j=1 exp(βT

j xi )
, j = 1, . . . ,m − 1 ; πim = 1−

m−1∑
j=1

πij
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Generalized logit models Fitting in R

Generalized logit models: Fitting
In R, the generalized logit model can be fit using the multinom()
function in the nnet
For interpretation, it is useful to reorder the levels of partic so that
not.work is the baseline level.

Womenlf$partic <- ordered(Womenlf$partic,
levels=c('not.work', 'parttime', 'fulltime'))

library(nnet)
mod.multinom <- multinom(partic ˜ hincome + children, data=Womenlf)
summary(mod.multinom, Wald=TRUE)
Anova(mod.multinom)

The Anova() tests are similar to what we got from summing these tests from
the two nested dichotomies:
Analysis of Deviance Table (Type II tests)

Response: partic
LR Chisq Df Pr(>Chisq)

hincome 15.2 2 0.00051 ***
children 63.6 2 1.6e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Generalized logit models Plotting

Generalized logit models: Plotting
As before, it is much easier to interpret a model from a plot than from
coefficients, but this is particularly true for polytomous response models
style="stacked" shows cumulative probabilities

library(effects)
plot(effect("hincome*children", mod.multinom), style="stacked")
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Generalized logit models Plotting

Generalized logit models: Plotting
You can also view the effects of husband’s income and children
separately in this main effects model with plot(allEffects)).

plot(allEffects(mod.multinom), ask=FALSE)

hincome effect plot

hincome

pa
rt

ic
 (

pr
ob

ab
ili

ty
)

0.2

0.4

0.6

0.8

0 10 20 30 40

 : partic not.work

0.2

0.4

0.6

0.8

 : partic parttime

0.2

0.4

0.6

0.8

 : partic fulltime

children effect plot

children

pa
rt

ic
 (

pr
ob

ab
ili

ty
)

0.2

0.4

0.6

absent present

 : partic not.work

0.2

0.4

0.6

 : partic parttime

0.2

0.4

0.6

 : partic fulltime

46 / 53



Generalized logit models A larger example

Political knowledge & party choice in Britain

Example from Fox & Andersen (2006): Data from 1997 British Election Panel
Survey (BEPS)

Response: Party choice— Liberal democrat, Labour, Conservative
Predictors

Europe: 11-point scale of attitude toward European integration
(high=“Eurosceptic”)
Political knowledge: knowledge of party platforms on European integration
(“low”=0–3=“high”)
Others: Age, Gender, perception of economic conditions, evaluation of party
leaders (Blair, Hague, Kennedy)– 1:5 scale

Model:
Main effects of Age, Gender, economic conditions (national, household)
Main effects of evaluation of party leaders
Interaction of attitude toward European integration with political knowledge
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Generalized logit models A larger example

BEPS data: Fitting
Fit using multinom() in the nnet package
library(effects) # data, plots
library(car) # for Anova()
library(nnet) # for multinom()
multinom.mod <- multinom(vote ˜ age + gender + economic.cond.national +

economic.cond.household + Blair + Hague + Kennedy +
Europe*political.knowledge, data=BEPS)

Anova(multinom.mod)

Anova Table (Type II tests)

Response: vote
LR Chisq Df Pr(>Chisq)

age 13.9 2 0.00097 ***
gender 0.5 2 0.79726
economic.cond.national 30.6 2 2.3e-07 ***
economic.cond.household 5.7 2 0.05926 .
Blair 135.4 2 < 2e-16 ***
Hague 166.8 2 < 2e-16 ***
Kennedy 68.9 2 1.1e-15 ***
Europe 78.0 2 < 2e-16 ***
political.knowledge 55.6 2 8.6e-13 ***
Europe:political.knowledge 50.8 2 9.3e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Generalized logit models A larger example

BEPS data: Interpretation?
How to understand the nature of these effects on party choice?
> summary(multinom.mod)

Call:
multinom(formula = vote ˜ age + gender + economic.cond.national +

economic.cond.household + Blair + Hague + Kennedy + Europe *
political.knowledge, data = BEPS)

Coefficients:
(Intercept) age gendermale economic.cond.national

Labour -0.8734 -0.01980 0.1126 0.5220
Liberal Democrat -0.7185 -0.01460 0.0914 0.1451

economic.cond.household Blair Hague Kennedy Europe
Labour 0.178632 0.8236 -0.8684 0.2396 -0.001706
Liberal Democrat 0.007725 0.2779 -0.7808 0.6557 0.068412

political.knowledge Europe:political.knowledge
Labour 0.6583 -0.1589
Liberal Democrat 1.1602 -0.1829

Std. Errors:
(Intercept) age gendermale economic.cond.national

Labour 0.6908 0.005364 0.1694 0.1065
Liberal Democrat 0.7344 0.005643 0.1780 0.1100
...

Residual Deviance: 2233
AIC: 2277
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Generalized logit models A larger example

BEPS data: Initial look, relative multiple barcharts

How does party choice— Liberal democrat, Labour, Conservative vary with
political knowledge and Europe attitude (high=“Eurosceptic”)?
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Generalized logit models A larger example

BEPS data: Effect plots to the rescue!
Age effect: Older more likely to vote Conservative
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Generalized logit models A larger example

BEPS data: Effect plots to the rescue!

Attitude toward European integration × political knowledge effect:

Low knowledge: little relation between attitude and party choice
As knowledge increases: more Eurosceptic views more likely to support
Conservatives
⇒ detailed understanding of complex models depends strongly on
visualization!
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Summary

Summary

Polytomous responses
m response categories→ (m − 1) comparisons (logits)
Different models for ordered vs. unordered categories

Proportional odds model
Simplest approach for ordered categories: Same slopes for all logits
Requires proportional odds asumption to be met
R: MASS::polr(); VGAM::vglm()

Nested dichotomies
Applies to ordered or unordered categories
Fit m − 1 separate independent models→ Additive χ2 values
R: only need glm()

Generalized (multinomial) logistic regression
Fit m − 1 logits as a single model
Results usually comparable to nested dichotomies
R: nnet::multinom()
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