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Model building Donner Party

Donner Party: A graphic tale of survival & influence
History:
@ Apr—May, 1846: Donner/Reed families set out from Springfield, IL to CA
@ Jul: Bridger’s Fort, WY, 87 people, 23 wagons
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Donner Party: A graphic tale of survival & influence
History:
@ “Hasting’s Cutoff”, untried route through Salt Lake Desert, Wasatch Mtns
(90 people)
@ Worst recorded winter: Oct 31 blizzard— Missed by 1 day, stranded at
“Truckee Lake” (now Donner’s Lake, Reno)

o Rescue parties sent out (“Dire necessity”, “Forelorn hope
o Relief parties from CA: 42 survivors (Mar—Apr, '47)
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Donner Party: Data

data ("Donner", package="vcdExtra")
DonnerS$survived <— factor (Donner$survived, labels=c("no", "yes"))

library (car)
some (Donner, 12)

## family age sex survived death
## Breen, Peter Breen 3 Male yes <NA>
## Donner, George Donner 62 Male no 1847-03-18
## Donner, Jacob Donner 65 Male no 1846-12-21
## Foster, Jeremiah MurFosPik 1 Male no 1847-03-13
## Graves, Jonathan Graves 7 Male yes <NA>
## Graves, Mary Ann Graves 20 Female yes <NA>
## Graves, Nancy Graves 9 Female yes <NA>
## McCutchen, Harriet McCutchen 1 Female no 1847-02-02
## Reed, James Reed 46 Male yes <NA>
## Reed, Thomas Keyes Reed 4 Male yes <NA>
## Reinhardt, Joseph Other 30 Male no 1846-12-21
## Wolfinger, Doris FosdWolf 20 Female yes <NA>



Overview: a gpairs () plot
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@ Binary response: survived H H e
o Categorica| predictors- sex s w110
family
@ Quantitative predictor: age

@ Q: Is the effect of age linear?

@ Q: Are there interactions among
predictors?

@ This is a generalized pairs plot,
with different plots for each pair




Model building Exploratory plots

Exploratory plots

Female
= Male

@ Survival decreases with age for
both men and women

@ Women more likely to survive,
particularly the young

@ Data is thin at older ages
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Using ggplot2

Basic plot: survived vs. age, colored by sex, with jittered points

gg <— ggplot (Donner,
aes (age, as.numeric(survived=="yes"), color = sex)) +
ylab ("Survived") +
geom_point (position = position_jitter (height = 0.02, width = 0)

Add conditional linear logistic regressions with

stat_smooth (method="glm")

gg + stat_smooth (method = "glm", family = binomial, formula =y ~ x,
alpha = 0.2, size=2, aes(fill = sex))



Questions

@ |s the relation of survival to age well expressed as a linear logistic
regression model?

@ Allow a quadratic or higher power, using poly (age, 2), poly (age, 3),

logit(;) a+ Bixi + Boxf
logit(mi) = a+ BiX + BoXF + Bax’

o Use natural spline functions, ns (age, df)
@ Use non-parametric smooths, loess (age, span, degree)
@ Is the relation the same for men and women? i.e., do we need an
interaction of age and sex?
@ Allow an interaction of sex * age orsex x f (age)
o Test goodness-of-fit relative to the main effects model



Model building Exploratory plots

gg + stat_smooth (method =

"glm", family = binomial,
formula = y ~ poly(x,2),
alpha = 0.2, size=2, aes(fill = sex))
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Model building Exploratory plots

gg + stat_smooth (method = "loess", span=0.9,
alpha = 0.2, size=2,
aes (fill = sex))

+ coord_cartesian (ylim=c(-.05,1.05))
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Fitting models

Models with linear effect of age:

donner.modl <- glm(survived =~ age + sex,
data=Donner, family=binomial)
donner.mod2 <- glm(survived ~ age * sex,

data=Donner, family=binomial)
Anova (donner .mod?2)

## Analysis of Deviance Table (Type II tests)

##

## Response: survived

#4 LR Chisg Df Pr (>Chisq)

##+ age 5.52 1 0.0188 =«
## sex 6.73 1 0.0095 x=
## age:sex 0.40 1 0.5269

## -

## Signif. codes: O 'xxx' 0.001 '%xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Fiting models

Models with quadratic effect of age:

donner.mod3 <- glm(survived ~ poly(age,2) + sex,
data=Donner, family=binomial)
donner.mod4 <- glm(survived ~ poly(age,2) * sex,
data=Donner, family=binomial)
Anova (donner .mod4)

## Analysis of Deviance Table (Type II tests)

##

## Response: survived

## LR Chisg Df Pr (>Chisq)

## poly(age, 2) 9.91 2 0.0070 *x
## sex 8.09 1 0.0044 x=
## poly(age, 2):sex 8.93 2 0.0115 =
#H ——

## Signif. codes: O 'xxx' 0.001 '%xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Comparing models

library (vcdExtra)
LRstats (donner.modl, donner.mod2, donner.mod3, donner.mod4)

## Likelihood summary table:

4 AIC BIC LR Chisg Df Pr(>Chisq)

## donner.modl 117 125 111.1 87 0.042 x

## donner.mod2 119 129 110.7 86 0.038 =

## donner.mod3 115 125 106.7 86 0.064

## donner.mod4 110 125 97.8 84 0.144

## ——

## Signif. codes: 0 "sxx' 0.001 'xx' 0.01 'x' 0.05 '.'" 0.1 ' ' 1

linear non-linear Ax? p-value

additive 111.128 106.731 4.396 0.036
non-additive | 110.727 97.799 12.928 0.000
Ax? 0.400 8.932
p-value 0.527 0.003
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Who was influential?

library (car)
res <— influencePlot (donner.mod3, id.col="blue", scale=8, id.n=2)
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Why are they influential?

idx <- which (rownames (Donner) %in% rownames (res))
# show data together with diagnostics
cbind (Donner[idx,2:4], res)

## age sex survived StudRes Hat CookD
## Breen, Patrick 51 Male yes 2.501 0.09148 0.32354
## Donner, Elizabeth 45 Female no -1.114 0.13541 0.03409
## Graves, Elizabeth C. 47 Female no -1.019 0.16322 0.03418
## Reed, James 46 Male yes 2.098 0.08162 0.14364

@ Patrick Breen, James Reed: Older men who survived
@ Elizabeth Donner, Elizabeth Graves: Older women who died
@ Moral lessons of this story:
e Don't try to cross the Donner Pass in late October; if you do, bring lots of
food
o Plots of fitted models show only what is included in the model
o Discrete data often need smoothing (or non-linear terms) to see the pattern
@ Always examine model diagnostics — preferably graphic
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Polytomous responses: Overview

When Response categories are:

F————————

{Unordered |
for example,
No improvement
Ford Some improvement
Smitherman Marked improvement
Pantelone

the analysis can use:

"Multinomial Proportional

‘Multinomial |

:Iogistic i odds model

\regression ! \Nested !
__________ \dichotomies !

we model these logits:

Some or marked None Some or marked
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Polytomous responses: Overview

@ m categories — (m — 1) comparisons (logits)
@ One part of the model for each logit
o Similar to ANOVA where an m-level factor — (m — 1) contrasts (df)
@ Response categories unordered, e.g., vote NDP, Liberal, Green, Tory
e Multinomial logistic regression
@ Fits m — 1 logistic models for logits of category i = 1,2,... m— 1 vs. category m
NDP Tory

@ eg., Tory
Green Tory

@ This is the most general approach
@ R:multinom() functionin nnet

@ Can also use nested dichotomies




Polytomous responses: Overview

@ Response categories ordered, e.g., None, Some, Marked improvement

e Proportional odds model

None H Some or Marked

@ Uses adjacent-category logits

None or Some H Marked
@ Assumes slopes are equal for all m — 1 logits; only intercepts vary
@ R:polr() in MASS

\ None H Some or Marked

o Nested dichotomies
\SomeH Marked

@ Model each logit separately
@ G? s are additive — combined model
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Polytomous response models Overview

Fitting and graphing: Overview

@ Model objects contain all necessary information for plotting

@ Basic diagnostic plots with plot (model)

@ Fitted values with predict () ; customize with points (), lines (), etc.
@ Effect plots most general

- alm()
HEs palr() - model
lataframe multinom() object
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Ordinal response: Proportional odds model

Arthritis treatment data:

Improvement
Sex Treatment None Some Marked Total
F Active 6 5 16 27
F Placebo 19 7 6 32
M Active 7 2 5 14
M Placebo 10 0 1 11

@ Model logits for adjacent category cutpoints:

7T,'j1

————— =logit ( None vs. [Some or Marked] )
Tij2 + Tij3

logit (¢1) = log

Tijt + Tij2
Tij3

logit (02) = log = logit ([None or Some] vs. Marked)

20/54



Proportional odds model

@ Consider a logistic regression model for each logit:
logit(fj1) = a1 + Xj; B1 None vs. Some/Marked

logit(fj2) = az + Xj; B2 None/Some vs. Marked

@ Proportional odds assumption: regression functions are parallel on the
logit scale i.e., 31 = Bo.
Proportional Odds Model
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Proportional odds model Latent variable interpretation

Proportional odds: Latent variable interpretation

A simple motivation for the proportional odds model:
@ Imagine a continuous, but unobserved response, &, a linear function of

predictors

& =08"x +¢

@ The observed response, Y, is discrete, according to some unknown
thresholds, a1 < ap, < -+ < am_1

@ Thatis, the response, Y =i if a; < & < ajiq

@ Thus, intercepts in the proportional odds model ~ thresholds on ¢
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Proportional odds: Latent variable interpretation

We can visualize the relation of the latent variable ¢ to the observed response
Y, for two values, x4 and xz, of a single predictor, X as shown below:

3 ‘ ‘ Y
4
Pr(Y =4|x)
O3 —f=--mmmmmmmm e e e
3
0
2
P
1
T T
X X;
X
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Proportional odds model Latent variable interpretation

Proportional odds: Latent variable interpretation
For the Arthritis data, the relation of improvement to age is shown below
(using the effects package)

Arthritis data: Age effect, latent variable scale

1 1 1 1 1

Marked

Improved: None, Some, Marked

| E— l“Tl{lel 1l ‘H 11l lH‘lHﬂllHllHH‘ﬂlHlllIHIIK% |

30 40 50 60 70
Age
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Proportional odds models in R

@ Fitting: polxr () in MASS package
The response, Improved has been defined as an ordered factor

data (Arthritis, package="vcd")
head (Arthritis$Improved)

## [1] Some None None Marked Marked Marked
## Levels: None < Some < Marked

Fitting:
library (MASS) # for polr()
library(car) # for Anova()

arth.polr <- polr(Improved ~ Sex + Treatment + Age,
data=Arthritis)

summary (arth.polr)

Anova (arth.polr) # Type II tests
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The summary () function gives standard statistical results:

> summary (arth.polr)

Call:
polr (formula = Improved ~ Sex + Treatment + Age, data = Arthritis)
Coefficients:
Value Std. Error t value

SexMale -1.25168 0.54636 -2.2909
TreatmentTreated 1.74529 0.47589 3.6674
Age 0.03816 0.01842 2.0722
Intercepts:

Value Std. Error t value
None | Some 2.5319 1.0571 2.3952
Some |[Marked 3.4309 1.0912 3.1442

Residual Deviance: 145.4579
AIC: 155.4579



The car::anova () function gives hypothesis tests for model terms:

> Anova (arth.polr) # Type II tests

Anova Table (Type II tests)

Response: Improved
LR Chisqg Df Pr(>Chisq)

Sex 5.6880 1 0.0170812 =

Treatment 14.7095 1 0.0001254 #*xx

Age 4.5715 1 0.0325081 =

Signif. codes: 0 '"¥x%xx' 0.001 '"%x' 0.01 '+' 0.05 '." 0.1 " !

@ anova () gives Type | (sequential) tests — not usually useful
@ Type Il (partial) tests control for the effects of all other terms

1



Testing the proportional odds assumption

@ The PO model is valid only when the slopes are equal for all predictors
@ This can be tested by comparing this model to the generalized logit NPO
model

PO: L = o+x'8 j=1,....m—1 (1)
NPO: L = oj+x'B8 j=1,....m—1 (2)

@ A likelihood ratio test requires fitting both models calculating
AG? = GZpy — G&, with p df.

@ This can be done using vglm () in the VGAM package

@ The rms package provides a visual assessment, plotting the conditional
mean E(X | Y) of a given predictor, X, at each level of the ordered
response Y.

@ If the response behaves ordinally in relation to X, these means should be
strictly increasing or decreasing with Y.
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Proportional odds model Testing the PO assumption

Testing the proportional odds assumption

In VGAM, the PO model is fit using family =
cumulative (parallel=TRUE)

library (VGAM)
arth.po <-= vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,
family = cumulative (parallel=TRUE))

The more general NPO model can be fit using parallel=FALSE.

arth.npo <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,
family = cumulative (parallel=FALSE))

The LR test says the PO model is OK:
VGAM: :1rtest (arth.npo, arth.po)

## Likelihood ratio test

##

## Model 1: Improved ~ Sex + Treatment + Age
## Model 2: Improved ~ Sex + Treatment + Age
## #Df LogLik Df Chisg Pr (>Chisq)

## 1 160 -71.8

## 2 163 -72.7 3 1.88 0.6
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Proportional odds model Plotting

Full-model plot of predicted probabilities:

Logistic Regression: Proportional Odds Model Logistic Regression: Proportional Odds Model
10 1.0
Female Male
£11 Treated1
0.8 il 0.8
/ Treated2

5 I Treated1
£os ~ £os
e e 4 Placebol S
£ - - g
] - 3]
13 - 13
1] g
3 3
g g g Treated2
E 04 - f 04
e — A g S
IS - J{H H - Placebo2 e

02 H% H{}E‘ 02 _-41 Placebol

i 49 Placebo2
0.0 0.0
20 30 40 50 60 70 80 20 60 70 80

@ Intercept1: [Marked , Some] vs. [None]

@ Intercept2: [Marked] vs. [Some, None]

@ On logit scale, these would be parallel lines

@ Effects of age, treatment, sex similar to what we saw before
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Proportional odds model Plotting

Proportional odds models in R: Plotting

@ Plotting: plot (effect () ) in effects package

> library(effects)
> plot (effect ("Treatment:Age", arth.polr))

Treatment*Age effect plot

30 40 50 60 70

L I I I L
Marked

|
Improved

\m;;mvsd Marksld
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08 o "= F
06 e - L
044 S / L
02 M 77777777777777777 -
TYETH 1 il o | A1 WTHTHIT .
5 Tebmaiia Ditetn ottt faitoas @ The default plot shows all details
R | T s .
B o s @ But, is harder to compare across
= g Fo4
o | |2 treatment and response levels
5 L L a1 | IO 11 T 11 AL |
E Improved : Mone Improved : None

Treatment : Trested

L L1y |
40 &0 B0 7
Age
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Proportional odds model Plotting

Proportional odds models in R: Plotting
Making visual comparisons easier:
’> plot (effect ("Treatment :Age", arth.polr), style='stacked') ‘

Treatment*Age effect plot

30 40 50 60 70
Il Il Il Il Il Il Il Il Il
Treatment : Placebo Treatment : Treated

0.8

0.6

0.4

Improved (probability)

0.2

30 40 50 60 70

Age
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Proportional odds model Plotting

Proportional odds models in R: Plotting
Making visual comparisons easier:
’> plot (effect ("Sex:Age", arth.polr), style='stacked') ‘

Sex*Age effect plot

30 40 50 60 70
1 1 1 1 1 1 1

Il
Sex : Female Sex : Male

Improved (probability)

Age
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Proportional odds model Plotting

Proportional odds models in R: Plotting

These plots are even simpler on the logit scale, using 1atent=TRUE to show
the cutpoints between response categories
‘ > plot (effect ("Treatment :Age", arth.polr, latent=TRUE)) ‘

Treatment*Age effect plot

30 40 50 60 70
1 1 1 1 1 1
Treatment : Treated

1 1 1
Treatment : Placebo

Improved: None, Some, Marked
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Nested dichotomies Basic ideas

Polytomous response: Nested dichotomies

@ m categories — (m — 1) comparisons (logits)

@ If these are formulated as (m — 1) nested dichotomies:

e Each dichotomy can be fit using the familiar binary-response logistic model,

e the m — 1 models will be statistically independent (G? statistics will be
additive)
o (Need some extra work to summarize these as a single, combined model)

@ This allows the slopes to differ for each logit

1

2 3 4 1
£ g
2 3 4

m—1
Gazﬂ = ZGz(Lf )

df,, = de(l—f )
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Nested dichotomies: Examples

- T
m=3 [None ] [Someormarked | L, =Ilog L
Arthritis i6 T
treatment [Some ] [Marked ] L= log&
3
m=4 T
L, =log————
Psychiatric [Normal | [Manic Depr Schiz__| T+ T + T,
diagnosis v -
[Manic_Depressed | [Schiz | L. =log = +41t3

[Manic_] [Depressed | I = T,
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Example: Women’s Labour-Force Participation

Data: Social Change in Canada Project, York ISR, car::Women1 £ data
@ Response: not working outside the home (n=155), working part-time
(n=42) or working full-time (n=66)
@ Model as two nested dichotomies:
e Working (n=106) vs. NotWorking (n=155)
o Working full-time (n=66) vs. working part-time (n=42).
Ly: ’ not working ‘ ‘ part-time, full-time

Lo: part-time || full-time

@ Predictors:
@ Children? — 1 or more minor-aged children
@ Husband’s Income — in $1000s
@ Region of Canada (not considered here)




Nested dichotomies Example

Nested dichotomoies: Combined tests

@ Nested dichotomies — 2 tests and df for the separate logits are
independent
@ — add, to give tests for the full m-level response (manually)
Global tests of BETA=0

Prob

Test Response ChisSqg DF Chisqg
Likelihood Ratio working 36.4184 2 <.0001
fulltime 39.8468 2 <.0001

ALL 76.2652 4 <.0001

Wald tests for each coefficient:
Wald tests of maximum likelihood estimates

Prob

Variable Response WaldChiSqg DF Chisqg
Intercept working 12.1164 1 0.0005
fulltime 20.5536 1 <.0001

ALL 32.6700 2 <.0001

children working 29.0650 1 <.0001
fulltime 24.0134 1 <.0001

ALL 53.0784 2 <.0001

husinc working 4.5750 1 0.0324
fulltime 7.5062 1 0.0061

ALL 12.0813 2 0.0024
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Nested dichotomies: recoding

In R, first create new variables, working and fulltime, using the
recode () function in the car:

> library(car) # for data and Anova/()
> data (Womenlf)
> Womenlf <- within (Womenlf, {
+ working <- recode (partic, " 'not.work' = 'no'; else = 'yes' ")
+ fulltime <- recode (partic,
+ " 'fulltime' = 'yes'; 'parttime' = 'no'; 'not.work' = NA")})
> some (Womenlf)
partic hincome children region fulltime working
31 not.work 13 present Ontario <NA> no
34 not.work 9 absent Ontario <NA> no
55 parttime 9 present Atlantic no yes
86 fulltime 27 absent BC yes yes
96 not.work 17 present Ontario <NA> no
141 not.work 14 present Ontario <NA> no
180 fulltime 13 absent BC yes yes
189 fulltime 9 present Atlantic yes yes
234 fulltime 5 absent Quebec yes yes
240 not.work 13 present Quebec <NA> no
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Nested dichotomies Fitting

Nested dichotomies: fitting

Then, fit models for each dichotomy:

> contrasts (children)<- 'contr.treatment'

> mod. fulltime <- glm(fulltime ~ hincome + children,

> mod.working <- glm(working =~ hincome + children, family=binomial,

datla=

family=binomial, dat

Some output from summary (mod.working):

Coefficients:

Estimate Std. Error z value Pr(>|z|
(Intercept) 1.33583 0.38376 3.481 0.0005
hincome -0.04231 0.01978 -2.139 0.0324
childrenpresent -1.57565 0.29226 -5.391 7e-08

* kK

* kK

Some output from summary (mod.fulltime):

Coefficients:

Estimate Std. Error z value Pr(>|z|
(Intercept) 3.47777 0.76711 4.534 5.80e-06
hincome -0.10727 0.03915 -2.740 0.00615

childrenpresent -2.65146 0.54108 -4.900 9.57e-07

* kK
* %
* kK
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Nested dichotomies Fitting

Nested dichotomies: interpretation
Write out the predictions for the two logits, and compare coefficients:

( Pr(working) )

Pr(not working)

1.336 — 0.042H$ — 1.576 kids

Pr(fuliime) \ * _ 5 478 _ 0.107 H$ — 2.652kids
Pr(parttime)

Better yet, plot the predicted log odds for these equations:

< Children absent < Children present
~
~
8 ~ 8
S N ~ S N o
o ~ ~ o
8 2 Ly 8 ~ ~
o o
kel N k=l >
Q [} LY
£ S £
T o SOl oo SN
| | ~
—— working S
¥ 4 = = full-time ¥ 4 S o
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Husband's Income Husband's Income
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Nested dichotomies: plotting

For plotting, calculate the predicted probabilities (or logits) over a grid of
combinations of the predictors in each sub-model, using the predict ()
function.

type='response’ gives these on the probability scale, whereas
type='1ink’ (the default) gives these on the logit scale.

pred <- expand.grid(hincome=1:45, children=c('absent', 'present'))
# get fitted values for both sub-models
p.work <- predict (mod.working, pred, type='response')

>
>
>
> p.fulltime <- predict (mod.fulltime, pred, type='response')

The fitted value for the fulltime dichotomy is conditional on working outside the
home; multiplying by the probability of working gives the unconditional
probability.

> p.full <- p.work * p.fulltime
> p.part <- p.work * (1 - p.fulltime)
> p.not <- 1 - p.work
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Nested dichotomies Plotting

Nested dichotomies in R: plotting

The plot below was produced using the basic R functions plot (), lines ()
and legend (). See the file w1 f-nested.R on the course web page for
details.
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Generalized logit models Basic ideas

Polytomous response: Generalized Logits

@ Models the probabilities of the m response categories as m — 1 logits
comparing each of the first m — 1 categories to the last (reference)

category.
@ Logits for any pair of categories can be calculated from the m — 1 fitted
ones.
@ With k predictors, xq, X2, ..., X, forj=1,2 ... . m—1,
T
Lim = log <7r”) = Boj + B1j Xi1 + Boj Xip + - -+ + Bj Xik
m
= ﬂ,'TXi

o One set of fitted coefficients, 3; for each response category except the last.
e Each coefficient, gy, gives the effect on the log odds of a unit change in the
predictor x;, that an observation belongs to category j vs. category m.

@ Probabilities in response caegories are calculated as:

exp(8] X)) j
7'[-" fr— B fr—
T exp(B] X))

m—1
Lo.om=1; wp=1->m
j=1

44/54



Generalized logit models Fitting in R

Generalized logit models: Fitting

@ In R, the generalized logit model can be fit using the multinom/()
function in the nnet

@ For interpretation, it is useful to reorder the levels of partic so that
not .work is the baseline level.

WomenlfSpartic <- ordered (WomenlfSpartic,
levels=c ('not.work', 'parttime', 'fulltime'))
library (nnet)

summary (mod.multinom, Wald=TRUE)
Anova (mod.multinom)

mod.multinom <- multinom(partic =~ hincome + children, data=Womenl

The Anova () tests are similar to what we got from summing these tests from

the two nested dichotomies:

Analysis of Deviance Table (Type II tests)

Response: partic

LR Chisg Df Pr(>Chisq)
hincome 15.2 2 0.00051 #xx*
children 63.6 2 1.6e-14 *xx%

Signif. codes: 0 "sxx' 0.001 '"sx' 0.01 'x' 0.05 '.'" 0.1 ' ' 1
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Generalized logit models Plotting

Generalized logit models: Plotting

@ As before, it is much easier to interpret a model from a plot than from
coefficients, but this is particularly true for polytomous response models
@ style="stacked" shows cumulative probabilities
library (effects)
plot (effect ("hincome+children", mod.multinom), style="stacked")

hincome*children effect plot

10 20 30 40
L

I I 1 L
children : absent children : present

partic (probability)

hincome
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Generalized logit models Plotting

Generalized logit models: Plotting

@ You can also view the effects of husband’s income and children
separately in this main effects model with plot (allEffects)).

‘plot (allEffects (mod.multinom), ask=FALSE)

hincome effect plot children effect plot
| | | | | | |
partic : fulltime partic : fulltime
0.8 = -
. 0.6
0.6 " - v
N 0.4 - ..l
0.2
g partic : parttime g partic : parttime
= B Fos =
3 =)
- ~ 0.6

g A - ros §
& B o4 & 7 04
o B Fo02 8 o2
= TR Srer- =
] : ]
Q partic : not.work _ Q

0.8 4 +

Ly w11 1| . .
0 10 20 30 40 absent present
hincome children
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Generalized logit models A larger example

Political knowledge & party choice in Britain

Example from Fox & Andersen (2006): Data from 1997 British Election Panel
Survey (BEPS)

@ Response: Party choice— , Labour, Conservative
@ Predictors
e Europe: 11-point scale of attitude toward European integration
(high="Eurosceptic”)
o Political knowledge: knowledge of party platforms on European integration
(“low”=0-3="high”)
e Others: Age, Gender, perception of economic conditions, evaluation of party
leaders (Blair, Hague, Kennedy)— 1:5 scale
@ Model:
e Main effects of Age, Gender, economic conditions (national, household)
e Main effects of evaluation of party leaders
o Interaction of attitude toward European integration with political knowledge
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BEPS data: Fitting

Fit using multinom () in the nnet package

library (effects) # data, plots

library(car) # for Anova()
library (nnet) # for multinom/()
multinom.mod <- multinom(vote ~ age + gender + economic.cond.national

economic.cond.household + Blair + Hague + Kennedy +
Europespolitical.knowledge, data=BEPS)
Anova (multinom.mod)

Anova Table (Type II tests)

Response: vote
LR Chisg Df Pr(>Chisq)

age 13.9 2 0.00097 xxx*
gender 0.5 2 0.79726
economic.cond.national 30.6 2 2.3e-07 *xx*x
economic.cond.household 5.7 2 0.05926
Blair 135.4 2 < 2e-16 *xx
Hague 166.8 2 < 2e-16 x*x
Kennedy 68.9 2 1.1e-15 x*xx*
Europe 78.0 2 < 2e-16 x*x
political.knowledge 55.6 2 8.6e-13 *xx*
Europe:political.knowledge 50.8 2 9.3e-12 *x*%
Signif. codes: 0 '"¥%x' 0.001 '"x' 0.01 'x' 0.05 '." 0.1 " ' 1
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BEPS data: Interpretation?

How to understand the nature of these effects on party choice?

‘> summary (multinom.mod) ‘

Call:

multinom(formula = vote ~ age + gender + economic.cond.national +
economic.cond.household + Blair + Hague + Kennedy + Europe x
political.knowledge, data = BEPS)

Coefficients:
(Intercept) age gendermale economic.cond.national
Labour -0.8734 -0.01980 0.1126 0.5220
Liberal Democrat -0.7185 -0.01460 0.0914 0.1451
economic.cond.household Blair Hague Kennedy Europe
Labour 0.178632 0.8236 -0.8684 0.2396 -0.001706
Liberal Democrat 0.007725 0.2779 -0.7808 0.6557 0.068412
political.knowledge Europe:political.knowledge
Labour 0.6583 -0.1589
Liberal Democrat 1.1602 -0.1829
Std. Errors:
(Intercept) age gendermale economic.cond.national
Labour 0.6908 0.005364 0.1694 0.1065

Liberal Democrat 0.7344 0.005643 0.1780 0.1100

Residual Deviance: 2233
AIC: 2277
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Generalized logit models A larger example

BEPS data: Initial look, relative multiple barcharts

How does party choice— , Labour, Conservative vary with
political knowledge and Europe attitude (high="Eurosceptic”)?
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Generalized logit models A larger example

BEPS data: Effect plots to the rescue!

Age effect: Older more likely to vote Conservative

BEPS data: effect of Age

08 -
o
= 0B o -
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§ Conservative
= | Labour L
a 04 Liberal Democrat

0z 4 =

RLLLU R R R R

30 40 a0 80 70 a0

age
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Generalized logit models A larger example

BEPS data: Effect plots to the rescue!

Attitude toward European integration x political knowledge effect:

Knowledge = 0 Knowledge = 1 Knowledge =2 Knowledge = 3
=1 o =1 o
=R =R =R =R
Conservative W Conservetive Conservative
= 2 = =
& 2 & 2
2 o L oo 2 o L oo
& g & g & g & g
& B R & B R Lakour
= Lahour | Lt £ Labour £
2 2 2 2
L & 31 2 =

= 2|
g =
el -| (— Liseral Democrat

Liberal Democrat Liberal Democrat

Z‘U
Z‘EI

20
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I

o
L
o
L
o
L
o
L

T T T T T T T T T T T T T T T T T T T T
2 4 6 ] 10 2 4 6 8 10 2 4 6 ] 10 2 4 6 ] 10

Attitue tovvard Europe Aftitude toward Europe Attitude tovvard Europe Aftitude toward Europe

@ Low knowledge: little relation between attitude and party choice

@ As knowledge increases: more Eurosceptic views more likely to support
Conservatives

@ = detailed understanding of complex models depends strongly on
visualization!



Summary

@ Polytomous responses
@ mresponse categories — (m — 1) comparisons (logits)
o Different models for ordered vs. unordered categories
@ Proportional odds model
o Simplest approach for ordered categories: Same slopes for all logits
o Requires proportional odds asumption to be met
e R: MASS:polr(); VGAM:vglm()
@ Nested dichotomies
o Applies to ordered or unordered categories
o Fit m — 1 separate independent models — Additive x? values
e R:only need glm()
@ Generalized (multinomial) logistic regression
e Fit m— 1 logits as a single model
@ Results usually comparable to nested dichotomies
@ R:nnet:imultinom/()
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