Logistic Regression II

Michael Friendly

Psych 6136

November 9, 2017

Donner Party: A graphic tale of survival & influence History:

- Apr-May, 1846: Donner/Reed families set out from Springfield, IL to CA
- Jul: Bridger's Fort, WY, 87 people, 23 wagons

TRAIL OF THE DONNER PARTY

Donner Party: A graphic tale of survival & influence History:

- "Hasting's Cutoff", untried route through Salt Lake Desert, Wasatch Mtns. (90 people)
- Worst recorded winter: Oct 31 blizzard— Missed by 1 day, stranded at "Truckee Lake" (now Donner's Lake, Reno)
 - Rescue parties sent out ("Dire necessity", "Forelorn hope", ...)
 - Relief parties from CA: 42 survivors (Mar–Apr, '47)

TRAIL OF THE DONNER PARTY

Donner Party: Data

data("Donner", package="vcdExtra")
Donner\$survived <- factor(Donner\$survived, labels=c("no", "yes"))</pre>

library(car)
some(Donner, 12)

##		family	age	sex	survived	death
##	Breen, Peter	Breen	3	Male	yes	<na></na>
##	Donner, George	Donner	62	Male	no	1847-03-18
##	Donner, Jacob	Donner	65	Male	no	1846-12-21
##	Foster, Jeremiah	MurFosPik	1	Male	no	1847-03-13
##	Graves, Jonathan	Graves	7	Male	yes	<na></na>
##	Graves, Mary Ann	Graves	20	Female	yes	<na></na>
##	Graves, Nancy	Graves	9	Female	yes	<na></na>
##	McCutchen, Harriet	McCutchen	1	Female	no	1847-02-02
##	Reed, James	Reed	46	Male	yes	<na></na>
##	Reed, Thomas Keyes	Reed	4	Male	yes	<na></na>
##	Reinhardt, Joseph	Other	30	Male	no	1846-12-21
##	Wolfinger, Doris	FosdWolf	20	Female	yes	<na></na>

Overview: a gpairs () plot

- Binary response: survived
- Categorical predictors: sex, family
- Quantitative predictor: age
- Q: Is the effect of age linear?
- Q: Are there interactions among predictors?
- This is a generalized pairs plot, with different plots for each pair

Exploratory plots

- Survival decreases with age for both men and women
- Women more likely to survive, particularly the young
- Data is thin at older ages

Using ggplot2

Basic plot: survived vs. age, colored by sex, with jittered points

Add conditional linear logistic regressions with stat_smooth (method="glm")

```
gg + stat_smooth(method = "glm", family = binomial, formula = y ~ x,
alpha = 0.2, size=2, aes(fill = sex))
```

Questions

- Is the relation of survival to age well expressed as a linear logistic regression model?
 - Allow a quadratic or higher power, using poly (age, 2), poly (age, 3),

 $\begin{aligned} \mathsf{logit}(\pi_i) &= \alpha + \beta_1 x_i + \beta_2 x_i^2 \\ \mathsf{logit}(\pi_i) &= \alpha + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 \end{aligned}$

- Use natural spline functions, ns (age, df)
- Use non-parametric smooths, loess (age, span, degree)
- Is the relation the same for men and women? i.e., do we need an interaction of age and sex?
 - Allow an interaction of sex * age or sex * f (age)

. . .

Test goodness-of-fit relative to the main effects model

Fitting models

Models with linear effect of age:

```
donner.mod1 <- glm(survived ~ age + sex,</pre>
                  data=Donner, family=binomial)
donner.mod2 <- glm(survived ~ age * sex,</pre>
                  data=Donner, family=binomial)
Anova (donner.mod2)
## Analysis of Deviance Table (Type II tests)
##
## Response: survived
##
  LR Chisq Df Pr(>Chisq)
## age 5.52 1 0.0188 *
## sex 6.73 1 0.0095 **
## age:sex 0.40 1 0.5269
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Fiting models

Models with quadratic effect of age:

```
donner.mod3 <- glm(survived ~ poly(age,2) + sex,</pre>
                  data=Donner, family=binomial)
donner.mod4 <- glm(survived ~ poly(age, 2) * sex,</pre>
                  data=Donner, family=binomial)
Anova (donner.mod4)
## Analysis of Deviance Table (Type II tests)
##
## Response: survived
##
                   LR Chisq Df Pr(>Chisq)
## poly(age, 2) 9.91 2 0.0070 **
                     8.09 1 0.0044 **
## sex
## poly(age, 2):sex 8.93 2 0.0115 *
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Comparing models

```
library(vcdExtra)
LRstats(donner.mod1, donner.mod2, donner.mod3, donner.mod4)
## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## donner.mod1 117 125 111.1 87 0.042 *
## donner.mod2 119 129 110.7 86 0.038 *
## donner.mod3 115 125 106.7 86 0.064 .
## donner.mod4 110 125 97.8 84 0.144
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

	linear	non-linear	$\Delta \chi^2$	<i>p</i> -value
additive	111.128	106.731	4.396	0.036
non-additive	110.727	97.799	12.928	0.000
$\Delta \chi^2$	0.400	8.932		
<i>p</i> -value	0.527	0.003		

Who was influential?

library(car)
res <- influencePlot(donner.mod3, id.col="blue", scale=8, id.n=2)</pre>

Why are they influential?

```
idx <- which(rownames(Donner) %in% rownames(res))
# show data together with diagnostics
cbind(Donner[idx,2:4], res)</pre>
```

##		age	sex	survived	StudRes	Hat	CookD
##	Breen, Patrick	51	Male	yes	2.501	0.09148	0.32354
##	Donner, Elizabeth	45	Female	no	-1.114	0.13541	0.03409
##	Graves, Elizabeth C.	47	Female	no	-1.019	0.16322	0.03418
##	Reed, James	46	Male	yes	2.098	0.08162	0.14364

- Patrick Breen, James Reed: Older men who survived
- Elizabeth Donner, Elizabeth Graves: Older women who died
- Moral lessons of this story:
 - Don't try to cross the Donner Pass in late October; if you do, bring lots of food
 - Plots of fitted models show only what is included in the model
 - Discrete data often need smoothing (or non-linear terms) to see the pattern
 - Always examine model diagnostics preferably graphic

Polytomous responses: Overview

Polytomous responses: Overview

- *m* categories \rightarrow (*m* 1) comparisons (logits)
 - One part of the model for each logit
 - Similar to ANOVA where an *m*-level factor \rightarrow (*m* 1) contrasts (df)
- Response categories unordered, e.g., vote NDP, Liberal, Green, Tory
 - Multinomial logistic regression
 - Fits m-1 logistic models for logits of category $i = 1, 2, \dots, m-1$ vs. category m NDP Tory Liberal Tory • e.g., Green Torv
 - This is the most general approach ٠
 - R: multinom() function in nnet •
 - Can also use nested dichotomies

Polytomous responses: Overview

Response categories ordered, e.g., None, Some, Marked improvement

- Proportional odds model
 - Uses adjacent-category logits

None	Some of	or Marked
None or Some		Marked

- Assumes slopes are equal for all m-1 logits; only intercepts vary
- R: polr() in MASS
- Some or Marked None Nested dichotomies Some Marked
 - Model each logit separately
 - G^2 s are additive \rightarrow combined model

Fitting and graphing: Overview

R:

- Model objects contain all necessary information for plotting •
- Basic diagnostic plots with plot (model) ۲
- Fitted values with predict (); customize with points (), lines (), etc. ٢
- Effect plots most general ۲

Ordinal response: Proportional odds model

Arthritis treatment data:

Improvement						
Sex	Treatment	None	Some	Marked	Total	
 ਸ	Active		 ج	16	27	
F	Placebo	19	7	6	32	
М	Active	7	2	5	14	
M	Placebo	10	0	1	11	

Model logits for adjacent category cutpoints:

 $\begin{aligned} \log \operatorname{it}(\theta_{ij1}) &= \log \frac{\pi_{ij1}}{\pi_{ij2} + \pi_{ij3}} = \operatorname{logit}(\operatorname{None vs.}[\operatorname{Some or Marked}]) \\ \log \operatorname{it}(\theta_{ij2}) &= \log \frac{\pi_{ij1} + \pi_{ij2}}{\pi_{ij3}} = \operatorname{logit}([\operatorname{None or Some}] \operatorname{vs.} \operatorname{Marked}) \end{aligned}$

Consider a logistic regression model for each logit:

 $logit(\theta_{ij1}) = \alpha_1 + \mathbf{x}'_{ij}\beta_1$ None vs. Some/Marked

 $logit(\theta_{ij2}) = \alpha_2 + \mathbf{x}'_{ij} \beta_2$ None/Some vs. Marked

 Proportional odds assumption: regression functions are parallel on the logit scale i.e., β₁ = β₂.

Proportional Odds Model

Proportional odds: Latent variable interpretation

A simple motivation for the proportional odds model:

Imagine a continuous, but *unobserved* response, *ξ*, a linear function of predictors

$$\xi_i = \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{x}_i + \epsilon_i$$

- The *observed* response, Y, is discrete, according to some *unknown* thresholds, α₁ < α₂, < ··· < α_{m-1}
- That is, the response, Y = i if $\alpha_i \le \xi_i < \alpha_{i+1}$
- Thus, intercepts in the proportional odds model \sim thresholds on ξ

Proportional odds: Latent variable interpretation

We can visualize the relation of the latent variable ξ to the observed response *Y*, for two values, x_1 and x_2 , of a single predictor, *X* as shown below:

Proportional odds: Latent variable interpretation

For the Arthritis data, the relation of improvement to age is shown below (using the effects package)

Arthritis data: Age effect, latent variable scale

Proportional odds models in R

• Fitting: polr() in MASS package

The response, Improved has been defined as an ordered factor

```
data(Arthritis, package="vcd")
head(Arthritis$Improved)
```

[1] Some None None Marked Marked Marked
Levels: None < Some < Marked</pre>

Fitting:

library(MASS)	<pre># for polr() # for Prove ()</pre>
library(car)	# for Anova()
	proved ~ Sex + Treatment + Age, ta=Arthritis)
summary(arth.polr)	
Anova(arth.polr)	# Type II tests

The summary () function gives standard statistical results:

> summary(arth.polr)

Call: polr(formula = Improved ~ Sex + Treatment + Age, data = Arthritis) Coefficients: Value Std. Error t value SexMale -1.25168 0.54636 -2.2909 TreatmentTreated 1.74529 0.47589 3.6674 Age 0.03816 0.01842 2.0722 Intercepts: Value Std. Error t value None|Some 2.5319 1.0571 2.3952 Some|Marked 3.4309 1.0912 3.1442 Residual Deviance: 145.4579 AIC: 155.4579 The car::Anova () function gives hypothesis tests for model terms:

anova () gives Type I (sequential) tests — not usually useful
Type II (partial) tests control for the effects of all other terms

Testing the proportional odds assumption

- The PO model is valid only when the slopes are equal for all predictors
- This can be tested by comparing this model to the generalized logit NPO model

PO:
$$L_j = \alpha_j + \mathbf{x}^T \boldsymbol{\beta} \qquad j = 1, \dots, m-1$$
 (1)

NPO:
$$L_j = \alpha_j + \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\beta}_j$$
 $j = 1, \dots, m-1$ (2)

- A likelihood ratio test requires fitting both models calculating $\Delta G^2 = G_{\rm NPO}^2 G_{\rm PO}^2$ with *p* df.
- This can be done using vglm() in the VGAM package
- The rms package provides a visual assessment, plotting the conditional mean *E*(*X* | *Y*) of a given predictor, *X*, at each level of the ordered response *Y*.
- If the response behaves ordinally in relation to *X*, these means should be strictly increasing or decreasing with *Y*.

Testing the proportional odds assumption In VGAM, the PO model is fit using family = cumulative (parallel=TRUE)

The more general NPO model can be fit using parallel=FALSE.

```
arth.npo <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,
family = cumulative(parallel=FALSE))
```

The LR test says the PO model is OK:

```
VGAM::lrtest(arth.npo, arth.po)
## Likelihood ratio test
##
## Model 1: Improved ~ Sex + Treatment + Age
## Model 2: Improved ~ Sex + Treatment + Age
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 160 -71.8
## 2 163 -72.7 3 1.88 0.6
```

Full-model plot of predicted probabilities:

- Intercept1: [Marked , Some] vs. [None]
- Intercept2: [Marked] vs. [Some, None]
- On logit scale, these would be parallel lines
- Effects of age, treatment, sex similar to what we saw before

Proportional odds models in R: Plotting

Plotting: plot (effect ()) in effects package

library(effects) >plot(effect("Treatment:Age", arth.polr)) >

- The default plot shows all details
- But, is harder to compare across treatment and response levels

Proportional odds models in R: Plotting Making visual comparisons easier:

> plot(effect("Treatment:Age", arth.polr), style='stacked')

Treatment*Age effect plot

Proportional odds models in R: Plotting Making visual comparisons easier:

> plot(effect("Sex:Age", arth.polr), style='stacked')

Sex*Age effect plot

Proportional odds models in R: Plotting

These plots are even simpler on the logit scale, using latent=TRUE to show the cutpoints between response categories

> plot(effect("Treatment:Age", arth.polr, latent=TRUE))

Treatment*Age effect plot

Polytomous response: Nested dichotomies

- *m* categories \rightarrow (*m* 1) comparisons (logits)
- If these are formulated as (m-1) nested dichotomies:
 - Each dichotomy can be fit using the familiar binary-response logistic model,
 - the *m* − 1 models will be statistically independent (*G*² statistics will be additive)
 - (Need some extra work to summarize these as a single, combined model)
- This allows the slopes to differ for each logit

Nested dichotomies: Examples

Example: Women's Labour-Force Participation

Data: Social Change in Canada Project, York ISR, car::Womenlf data

- Response: not working outside the home (n=155), working part-time (n=42) or working full-time (n=66)
- Model as two nested dichotomies:
 - Working (n=106) vs. NotWorking (n=155)
 - Working full-time (n=66) vs. working part-time (n=42).

Predictors:

- Children? 1 or more minor-aged children
- Husband's Income in \$1000s
- Region of Canada (not considered here)

Nested dichotomoies: Combined tests

- Nested dichotomies $\rightarrow \chi^2$ tests and df for the separate logits are independent
- \rightarrow add, to give tests for the full *m*-level response (manually)

	Global tests	of BETA=0		Prob	
Test	Response	ChiSq	DF	ChiSq	
Likelihood Ratio	working fulltime ALL	36.4184 39.8468 76.2652	2 2 4	<.0001 <.0001 <.0001	

Wald tests for each coefficient:

Wald t	tests of maxi	mum likelihood	estir	nates Prob	
Variable	Response	WaldChiSq	DF	ChiSq	
Intercept	working fulltime ALL	12.1164 20.5536 32.6700	1 1 2	0.0005 <.0001 <.0001	
children	working fulltime ALL	29.0650 24.0134 53.0784	1 1 2	<.0001 <.0001 <.0001	
husinc	working fulltime ALL	4.5750 7.5062 12.0813	1 1 2	0.0324 0.0061 0.0024	

Nested dichotomies: recoding

In R, first create new variables, working and fulltime, using the recode () function in the car:

>	library(car) # for data and Anova()
>	data(Womenlf)
>	Womenlf <- within(Womenlf,{
+	<pre>working <- recode(partic, " 'not.work' = 'no'; else = 'yes' ")</pre>
+	fulltime <- recode (partic,
+	" 'fulltime' = 'yes'; 'parttime' = 'no'; 'not.work' = NA")})
>	some(Womenlf)

	partic	hincome	children	region	fulltime	working
31	not.work	13	present	Ontario	<na></na>	no
34	not.work	9	absent	Ontario	<na></na>	no
55	parttime	9	present	Atlantic	no	yes
86	fulltime	27	absent	BC	yes	yes
96	not.work	17	present	Ontario	<na></na>	no
141	not.work	14	present	Ontario	<na></na>	no
180	fulltime	13	absent	BC	yes	yes
189	fulltime	9	present	Atlantic	yes	yes
234	fulltime	5	absent	Quebec	yes	yes
240	not.work	13	present	Quebec	<na></na>	no

Nested dichotomies: fitting

Then, fit models for each dichotomy:

> contrasts(children)<- 'contr.treatment'</pre> > mod.working <- glm(working ~ hincome + children, family=binomial, data= > mod.fulltime <- qlm(fulltime ~ hincome + children, family=binomial, dat

Some output from summary (mod.working):

Coefficients:					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	1.33583	0.38376	3.481	0.0005	* * *
hincome	-0.04231	0.01978	-2.139	0.0324	*
childrenpresent	-1.57565	0.29226	-5.391	7e-08	* * *

Some output from summary (mod.fulltime):

Coefficients:					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	3.47777	0.76711	4.534	5.80e-06	* * *
hincome	-0.10727	0.03915	-2.740	0.00615	* *
childrenpresent	-2.65146	0.54108	-4.900	9.57e-07	* * *

Nested dichotomies: interpretation

Write out the predictions for the two logits, and compare coefficients:

Better yet, plot the predicted log odds for these equations:

Nested dichotomies: plotting

For plotting, calculate the predicted probabilities (or logits) over a grid of combinations of the predictors in each sub-model, using the predict () function.

type=' response' gives these on the probability scale, whereas type='link' (the default) gives these on the logit scale.

```
> pred <- expand.grid(hincome=1:45, children=c('absent', 'present'))</pre>
> # get fitted values for both sub-models
> p.work <- predict(mod.working, pred, type='response')</pre>
> p.fulltime <- predict(mod.fulltime, pred, type='response')
```

The fitted value for the fulltime dichotomy is conditional on working outside the home; multiplying by the probability of working gives the unconditional probability.

```
> p.full <- p.work * p.fulltime</pre>
> p.part <- p.work * (1 - p.fulltime)</pre>
> p.not <- 1 - p.work
```

Nested dichotomies in R: plotting

The plot below was produced using the basic R functions plot (), lines () and legend(). See the file wlf-nested.R on the course web page for details.

Polytomous response: Generalized Logits

- Models the probabilities of the *m* response categories as *m* 1 logits comparing each of the first *m* - 1 categories to the last (reference) category.
- Logits for any pair of categories can be calculated from the m 1 fitted ones.
- With *k* predictors, $x_1, x_2, ..., x_k$, for j = 1, 2, ..., m 1,

$$L_{jm} \equiv \log\left(\frac{\pi_{ij}}{\pi_{im}}\right) = \beta_{0j} + \beta_{1j} x_{i1} + \beta_{2j} x_{i2} + \dots + \beta_{kj} x_{ik}$$
$$= \beta_j^{\mathsf{T}} \mathbf{x}_i$$

- One set of fitted coefficients, β_j for each response category except the last.
- Each coefficient, β_{hj}, gives the effect on the log odds of a unit change in the predictor x_h that an observation belongs to category j vs. category m.
- Probabilities in response caegories are calculated as:

$$\pi_{ij} = rac{\exp(eta_j^{\mathsf{T}} \mathbf{x}_i)}{\sum_{j=1}^{m-1} \exp(eta_j^{\mathsf{T}} \mathbf{x}_i)} \ , \, j = 1, \dots, m-1 \, ; \qquad \pi_{im} = 1 - \sum_{j=1}^{m-1} \pi_{ij}$$

Generalized logit models: Fitting

- In R, the generalized logit model can be fit using the multinom() function in the nnet
- For interpretation, it is useful to reorder the levels of partic so that not.work is the baseline level.

```
Womenlf$partic <- ordered(Womenlf$partic,
    levels=c('not.work', 'parttime', 'fulltime'))
library(nnet)
mod.multinom <- multinom(partic ~ hincome + children, data=Womenl
summary(mod.multinom, Wald=TRUE)
Anova(mod.multinom)
```

The **Anova** () tests are similar to what we got from summing these tests from the two nested dichotomies:

```
Analysis of Deviance Table (Type II tests)

Response: partic

LR Chisq Df Pr(>Chisq)

hincome 15.2 2 0.00051 ***

children 63.6 2 1.6e-14 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Generalized logit models: Plotting

- As before, it is much easier to interpret a model from a plot than from coefficients, but this is particularly true for polytomous response models
- style="stacked" shows cumulative probabilities

library(effects) plot(effect("hincome*children", mod.multinom), style="stacked")

hincome*children effect plot

Generalized logit models: Plotting

• You can also view the effects of husband's income and children separately in this main effects model with plot (allEffects)).

plot(allEffects(mod.multinom), ask=FALSE)

Political knowledge & party choice in Britain

Example from Fox & Andersen (2006): Data from 1997 British Election Panel Survey (BEPS)

- Response: Party choice— Liberal democrat, Labour, Conservative
- Predictors
 - Europe: 11-point scale of attitude toward European integration (high="Eurosceptic")
 - Political knowledge: knowledge of party platforms on European integration ("low"=0-3="high")
 - Others: Age, Gender, perception of economic conditions, evaluation of party leaders (Blair, Hague, Kennedy)– 1:5 scale

Model:

- Main effects of Age, Gender, economic conditions (national, household)
- Main effects of evaluation of party leaders
- Interaction of attitude toward European integration with political knowledge

BEPS data: Fitting

Fit using multinom () in the nnet package

```
library(effects) # data, plots
library(car) # for Anova()
library(nnet) # for multinom()
multinom.mod <- multinom(vote ~ age + gender + economic.cond.national +
        economic.cond.household + Blair + Hague + Kennedy +
        Europe*political.knowledge, data=BEPS)
Anova(multinom.mod)</pre>
```

Anova Table (Type II tests)

Response: vote

	LR Chisq Df	E Pr(>Chisq)	
age	13.9 2	2 0.00097	* * *
gender	0.5 2	0.79726	
economic.cond.national	30.6 2	2.3e-07	* * *
economic.cond.household	5.7 2	0.05926	•
Blair	135.4 2	2 < 2e-16	* * *
Haque	166.8 2	2 < 2e-16	* * *
Kennedy	68.9 2	2 1.1e-15	* * *
Europe	78.0 2	2 < 2e-16	* * *
political.knowledge	55.6 2	8.6e-13	* * *
Europe:political.knowledge	50.8 2	9.3e-12	* * *
Signif. codes: 0 '***' 0.0	0.01 '**' 0.0)1 '*' 0.05	'.' 0.1 ' ' 1

BEPS data: Interpretation?

> summarv(multinom.mod)

How to understand the *nature* of these effects on party choice?

```
Call:
multinom(formula = vote ~ age + gender + economic.cond.national +
   economic.cond.household + Blair + Hague + Kennedy + Europe *
   political.knowledge, data = BEPS)
Coefficients:
                 (Intercept) age gendermale economic.cond.national
                    -0.8734 -0.01980 0.1126
Labour
                                                               0.5220
Liberal Democrat -0.7185 -0.01460 0.0914
                                                               0.1451
                economic.cond.household Blair Hague Kennedy Europe
                               0.178632 0.8236 -0.8684 0.2396 -0.001706
Labour
Liberal Democrat
                               0.007725 0.2779 -0.7808 0.6557
                                                               0.068412
                political.knowledge Europe:political.knowledge
Labour
                             0.6583
                                                       -0.1589
Liberal Democrat
                             1.1602
                                                       -0.1829
Std. Errors:
                 (Intercept) age gendermale economic.cond.national
                     0.6908 0.005364
                                     0.1694
Labour
                                                               0.1065
Liberal Democrat 0.7344 0.005643 0.1780
                                                               0.1100
. . .
Residual Deviance: 2233
ATC: 2277
```

BEPS data: Initial look, relative multiple barcharts

How does party choice— Liberal democrat, Labour, Conservative vary with political knowledge and Europe attitude (high="Eurosceptic")?

BEPS data: Effect plots to the rescue!

Age effect: Older more likely to vote Conservative

BEPS data: effect of Age

BEPS data: Effect plots to the rescue!

Attitude toward European integration × political knowledge effect:

- Low knowledge: little relation between attitude and party choice
- As knowledge increases: more Eurosceptic views more likely to support Conservatives
- ⇒ detailed understanding of complex models depends strongly on visualization!

Summary

Polytomous responses

- *m* response categories \rightarrow (*m* 1) comparisons (logits)
- Different models for ordered vs. unordered categories

Proportional odds model

- Simplest approach for ordered categories: Same slopes for all logits
- Requires proportional odds asumption to be met
- R: MASS::polr(); VGAM::vglm()

Nested dichotomies

- Applies to ordered or unordered categories
- Fit m-1 separate independent models \rightarrow Additive χ^2 values
- R: only need glm()

Generalized (multinomial) logistic regression

- Fit *m* 1 logits as a *single* model
- Results usually comparable to nested dichotomies
- R: nnet::multinom()