Overview

Model-based methods: Overview

Structure

- Explicitly assume some probability distribution for the data, e.g., binomial, Poisson, ...
- Distinguish between the systematic component—explained by the model—and a random component, which is not
- Allow a compact summary of the data in terms of a (hopefully) small number of parameters

Advantages

- Inferences: hypothesis tests and confidence intervals
- Can test individual model terms (anova())
- Methods for model selection: adjust balance between goodness-of-fit and parsimony
- Predicted values give model-smoothed summaries for plotting
- \(\implies \) Interpret the fitted model graphically

loglm vs. glm

With loglm() you can only test overall fit or difference between models

```r
berk.mod1 <- loglm(~ Dept * (Gender + Admit), data=UCBAdmissions)
berk.mod2 <- loglm(~(Admit + Dept + Gender)^2, data=UCBAdmissions)
anova(berk.mod2)
## Call:
## loglm(formula = ~(Admit + Dept + Gender)^2, data = UCBAdmissions)
## ## Statistics:
## X^2 df  P(> X^2)
## Likelihood Ratio 20.204 6 0.0011441
## Pearson 18.823 5 0.0020740
## LRstats(berk.mod1, berk.mod2)
## ## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## berk.mod1 217.38 217.38 21.736 6 0.0011 **
## berk.mod2 217.240 217.240 20.2 5 0.0011 **
## ---
## Signif. codes: 0 '***' 0.001 '** ' 0.01 ' ' 0.05 ' . ' 1
```

Comparing models with anova() and LRstats()

```
anova(berk.mod1, berk.mod2, test="Chisq")
## LR tests for hierarchical log-linear models
## ## Model 1:
## ~Dept * (Gender + Admit)
## Model 2:
## ~(Admit + Dept + Gender)^2
## ## Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
## Model 1 21.736 6 1.5312 1 0.21593
## Model 2 20.204 5 0.0011441 0.0011441
## Saturated 0.000 0 20.2043 5 0.0011441
```
Overview

Model-based methods

With `glm()` you can test individual terms with `anova()` or `car::Anova()`

```r
berkeley <- as.data.frame(UCBAdmissions)
berk glm2 <- glm(Freq ~ (Dept+Gender+Admit)^2, data=berkeley,
  family="poisson")
anova(berk glm2, test="Chisq")
```

Analysis of Deviance Table

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>23</td>
<td>2650</td>
<td>18</td>
<td>2491</td>
</tr>
<tr>
<td>Dept</td>
<td>5</td>
<td>160</td>
<td>17</td>
<td>2328</td>
</tr>
<tr>
<td>Gender</td>
<td>1</td>
<td>813</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Admit</td>
<td>1</td>
<td>2098</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dept:Gender</td>
<td>5</td>
<td>1221</td>
<td>11</td>
<td>877</td>
</tr>
<tr>
<td>Dept:Admit</td>
<td>5</td>
<td>855</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Gender:Admit</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>0.22</td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fitting and graphing: Overview

Object-oriented approach in R:

- Fit model `obj <- glm(...)` → a `model object`
- `print(obj)` and `summary(obj)` → numerical results
- `anova(obj)` and `Anova(obj)` → tests for model terms
- `update(obj), add1(obj), drop1(obj)` for model selection

Plot methods:
- `plot(obj)` often gives diagnostic plots
- Other plot methods:
 - Mosaic plots: `mosaic(obj)` for "loglm" and "glm" objects
 - Effect plots: `plot(Effect(obj))` for nearly all linear models
 - Influence plots (car): `influencePlot(obj)` for "glm" objects

Objects and methods

How this works:

- Model objects have a "class" attribute:
 - `loglm()`: "loglm"
 - `glm()`: c("glm", "lm") — inherits also from `lm()`
- Class-specific methods have names like `method.class`, e.g.,
 - `plot.glm()`, `mosaic.loglm()`
- Generic functions (print(), summary(), plot()...) call the appropriate method for the class

```r
arth.mod <- glm(Better ~ Age + Sex + Treatment, data=Arthritis)
class(arth.mod)
```

```r
# [1] "glm" "lm"
```

Methods for "glm" objects:

```r
library(MASS); library(vcdExtra)
methods(class="glm")
```

```r
# [1] add1 addterm anova
# [4] Anova asGnm assoc
# [7] avPlot Boot bootCase
# [10] cereplot coefci coeftest
# [13] coerce confidenceEllipse confint
# [16] cooks.distance deviance drop1
# [19] dropterm effects extractAIC
# [22] family formula gamma.shape
# [25] influence initialize leveragePlot
# [28] linearHypothesis logLik mmp
# [31] model.frame modFit mosaic
# [34] ncvTest nosbs predict
# [37] print profile qPlot
# [40] residualPlot residualPlots residuals
# [43] rstandard rstudent show
# [46] sieve sigmaHat slotsFromS3
# [49] summary vcov weights
# see '?methods' for accessing help and source code
```
Object and methods

Logistic regression models

- **Response variable**: success/failure, vote: yes/no
- **Binomial data**: x successes in n trials (grouped data)
- **Ordinal response**: none < some < severe depression
- **Polytomous response**: vote Liberal, Tory, NDP, Green

Explanatory variables

- **Quantitative regressors**: age, dose
- **Transformed regressors**: \(\sqrt{\text{age}}, \log(\text{dose}) \)
- **Polynomial regressors**: \(\text{age}^2, \text{age}^3 \)
- **Categorical predictors**: treatment, sex (dummy variables, contrasts)
- **Interaction regressors**: treatment \(\times \) age, sex \(\times \) age

This is exactly the same as in classical ANOVA, regression models

Arthritis treatment data

- The response variable, Improved is **ordinal**: "None" < "Some" < "Marked"
- A binary logistic model can consider just **Better = (Improved>"None")**
- **Other important predictors**: Sex, Treatment
- **Main Q**: how does treatment affect outcome?
- **How does this vary with Age and Sex?**
- **This plot shows the binary observations, with several model-based smoothings**

Association models

- **Loglinear models**
 - (Contingency table form)
 - [Admit][GenderDept]
 - [AdmitDept][GenderDept]
 - [AdmitDept][GenderDept][GenderDept]

- **Poisson GLMs**
 - (Frequency data frame)
 - Freq ~ Admit + Gender*Dept
 - Freq ~ Admit*Dept + Gender*Dept
 - Freq ~ right+left+Diag(right+left)
 - Freq ~ right+left+Symm(right+left)

Response models

- **Binary response**
 - Categorical predictors: Logit models
 - \(\logit(\text{Admit}) \sim 1 \)
 - \(\logit(\text{Admit}) \sim \text{Dept} \)
 - \(\logit(\text{Admit}) \sim \text{Dept} + \text{Gender} \)

- **Continuous/mixed predictors**
 - Logistic regression models
 - \(P(\text{Admit}) \sim \text{Dept} + \text{Age} + \text{GRE} \)

- **Polytomous response**
 - Ordinal: proportional odds model
 - \(\text{Improve} \sim \text{Age} \times \text{Sex} \times \text{Treatment} \)
 - General: multinomial model
 - \(\text{WomenWork} \sim \text{Kids} + \text{HusbandInc} \)
Berkeley admissions data

- Admit/Reject can be considered a **binomial response** for each Dept and Gender.
- Logistic regression here is analogous to an ANOVA model, but for log odds(Admit).
- (With categorical predictors, these are often called logit models)
- Every such model has an equivalent **loglinear** model form.
- This plot shows fitted logits for the main effects model, Dept + Gender.

Survival in the Donner Party

- Binary response: **survived**
- Categorical predictors: **sex**, **family**
- Quantitative predictor: **age**
- Q: Is the effect of age linear?
- Q: Are there interactions among predictors?

Binary response: What’s wrong with OLS?

- For a binary response, \(Y \in (0, 1) \), want to predict \(\pi = \Pr(Y = 1 \mid x) \)
- A **linear probability model** uses classical linear regression (OLS)
- Problems:
 - Gives predicted values and CIs outside \(0 \leq \pi \leq 1 \)
 - Homogeneity of variance is violated: \(\forall(\hat{\pi}) = \hat{\pi}(1 - \hat{\pi}) \neq \text{constant} \)
 - Inferences, hypothesis tests are wrong!

OLS vs. Logistic regression

- OLS regression:
 - Assume \(y(x) \sim N(0, \sigma^2) \)
- Logistic regression:
 - Assume \(\Pr(y=1 \mid x) \sim \text{binomial}(p) \)
Logistic regression

- Logistic regression avoids these problems
- Models \(\logit(\pi_i) \equiv \log[\pi_i/(1 - \pi_i)] \)
- \(\logit \) is interpretable as “log odds” that \(Y = 1 \)
- A related probit model gives very similar results, but is less interpretable
- For \(0.2 \leq \pi \leq 0.8 \) fitted values are close to those from linear regression.

Logistic regression models: Multiple predictors

- For a binary response, \(Y \in (0, 1) \), let \(x \) be a vector of \(p \) regressors, and \(\pi_i \) be the probability, \(\Pr(Y = 1 \mid x) \).
- The logistic regression model is a linear model for the log odds, or \(\logit \) that \(Y = 1 \), given the values in \(x \),
 \[
 \logit(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \alpha + x_i^T \beta
 \]
- An equivalent (non-linear) form of the model may be specified for the probability, \(\pi_i \), itself,
 \[
 \pi_i = \{1 + \exp[-(\alpha + x_i^T \beta)]\}^{-1}
 \]
- The logistic model is also a multiplicative model for the odds of “success,”
 \[
 \frac{\pi_i}{1 - \pi_i} = \exp(\alpha + x_i^T \beta) = \exp(\alpha) \exp(x_i^T \beta)
 \]
- Increasing \(x_{ij} \) by 1 increases \(\logit(\pi_i) \) by \(\beta_j \), and multiplies the odds by \(e^{\beta_j} \).

Logistic regression: One predictor

The coefficients of this model have simple interpretations in terms of odds and log odds:
- The odds can be expressed as a multiplicative model
 \[
 \text{odds}(Y = 1) = \frac{\pi(x)}{1 - \pi(x)} = \exp(\alpha + \beta x) = e^\alpha (e^\beta)^x .
 \]
- \(\beta \) is the change in the log odds associated with a unit increase in \(x \).
- The odds are multiplied by \(e^\beta \) for each unit increase in \(x \).
- \(\alpha \) is log odds at \(x = 0 \); \(e^\alpha \) is the odds of a favorable response at this \(x \)-value.
- In R, use \(\exp(\text{coef(obj)}) \) to get these values.
- Another interpretation: In terms of probability, the slope of the logistic regression curve is \(\beta \pi(1 - \pi) \)
- This has the maximum value \(\beta/4 \) at \(\pi = \frac{1}{2} \)

For a single quantitative predictor, \(x \), the simple linear logistic regression model posits a linear relation between the log odds (or \(\logit \)) of \(\Pr(Y = 1) \) and \(x \),
 \[
 \logit[\pi(x)] = \log\left(\frac{\pi(x)}{1 - \pi(x)}\right) = \alpha + \beta x .
 \]
- When \(\beta > 0 \), \(\pi(x) \) and the log odds increase as \(x \) increases; when \(\beta < 0 \) they decrease with \(x \).
- This model can also be expressed as a model for the probabilities \(\pi(x) \)
 \[
 \pi(x) = \log^{-1}[\pi(x)] = \frac{1}{1 + \exp[-(\alpha + \beta x)]}
 \]
Fitting the logistic regression model

Logistic regression models are the special case of **generalized linear models**, fit in R using `glm(..., family=binomial)`

For this example, we define Better as any improvement at all:

```r
data("Arthritis", package="vcd")
Arthritis$Better <- as.numeric(Arthritis$Improved > "None")
```

Fit and print:

```r
arth.logistic <- glm(Better ~ Age, data=Arthritis, family=binomial)
arth.logistic
```

The `summary()` method gives details:

```r
summary(arth.logistic)
```

Interpreting coefficients

```r
coef(arth.logistic)
```

- **Intercept**: -2.6421
- **Age**: 0.0492

```r
exp(coef(arth.logistic))
```

- **Intercept**: 0.0712
- **Age**: 1.0505

```r
exp(10*coef(arth.logistic)[2])
```

- **Age**: 1.6364

Interpretations:

- **log odds(Better)** increase by $\beta = 0.0492$ for each year of age
- **odds(Better)** multiplied by $e^\beta = 1.05$ for each year of age— a 5% increase
- over 10 years, odds(Better) are multiplied by $exp(10 \times 0.0492) = 1.64$, a 64% increase.
- **Pr(Better)** increases by $\beta/4 = 0.0123$ for each year (near $\pi = \frac{1}{2}$)

Multiple predictors

The main interest here is the effect of Treatment. Sex and Age are **control variables**. Fit the main effects model (no interactions):

$$
\text{logit}(\pi_i) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3
$$

where x_1 is Age and x_2 and x_3 are the factors representing Sex and Treatment, respectively. R uses dummy (0/1) variables for factors.

- α: doesn’t have a sensible interpretation here. Why?
- β_1: increment in log odds(Better) for each year of age.
- β_2: difference in log odds for male as compared to female.
- β_3: difference in log odds for treated vs. the placebo group.
Multiple predictors: Fitting

Fit the main effects model. Use $I(Age-50)$ to center Age, making α interpretable.

```
arth.logistic2 <- glm(Better ~ I(Age-50) + Sex + Treatment,
data=Arthritis, family=binomial)
```

```
library(lmtest)
coeftest(arth.logistic2)
##
## z test of coefficients:
##
##                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)         -0.5781    0.3674  -1.57  0.116
## I(Age - 50)         0.0487     0.0207   2.36  0.018 *
## SexMale             -1.4878    0.5948  -2.50  0.012 *
## TreatmentTreated    1.7598     0.5365   3.28  0.001 **
## ---
## Signif. codes: 0 ' ***' 0.001 ' **' 0.01 ' *' 0.05 '.' 0.1 ' ' 1
```

```
cbind(coef=coef(arth.logistic2),
      OddsRatio=exp(coef(arth.logistic2)), exp(confint(arth.logistic2)))
##
##          coef OddsRatio 2.5 % 97.5 %
## (Intercept)   -0.5781  0.561  0.2647  1.132
## I(Age - 50)   0.0487  1.050  1.0100  1.096
## SexMale      -1.4878  0.226  0.0652  0.689
## TreatmentTreated 1.7598  5.811 2.1187 17.727
```

- $\alpha = -0.578$: At age 50, females given placebo have odds(Better) of $e^{-0.578} = 0.56$.
- $\beta_1 = 0.0487$: Each year of age multiplies odds(Better) by $e^{0.0487} = 1.05$, a 5% increase.
- $\beta_2 = -1.49$: Males $e^{-1.49} = 0.26 \times$ less likely to show improvement as females. (Or, females $e^{1.49} = 4.437 \times$ more likely than males.)
- $\beta_3 = 1.76$: Treated $e^{1.76} = 5.81 \times$ more likely Better than Placebo

Interpreting coefficients

```
coeftest() in lmtest gives just the tests of coefficients provided by
summary():
```

Hypothesis testing: Questions

- **Overall test**: How does my model, $	ext{logit}(\pi) = \alpha + \mathbf{x}^T \beta$ compare with the null model, $	ext{logit}(\pi) = \alpha$?

 $H_0 : \beta_1 = \beta_2 = \cdots = \beta_p = 0$

- **One predictor**: Does x_k significantly improve my model? Can it be dropped?

 $H_0 : \beta_k = 0$ given other predictors retained

- **Lack of fit**: How does my model compare with a perfect model (saturated model)?

For ANOVA, regression, these tests are carried out using F-tests and t-tests. In logistic regression (fit by maximum likelihood) we use

- F-tests \rightarrow likelihood ratio χ^2 tests
- t-tests \rightarrow Wald z or χ^2 tests

Maximum likelihood estimation

- Likelihood, $\mathcal{L} = \Pr(\text{data} | \text{model})$, as function of model parameters

 For case i,

 $$
 \mathcal{L}_i = \begin{cases}
 p_i & \text{if } Y_i = 1 \\
 1-p_i & \text{if } Y_i = 0
 \end{cases} = p_i^{Y_i}(1-p_i)^{1-Y_i} \quad \text{where } \quad p_i = \frac{Y_i}{1+(1+\exp(\mathbf{x}_i \beta))}
 $$

 Under independence, joint likelihood is the product over all cases

 $$
 \mathcal{L} = \prod_i^n p_i^{Y_i}(1-p_i)^{1-Y_i}
 $$

 \implies Find estimates $\hat{\beta}$ that maximize log \mathcal{L}. Iterative, but this solves the “estimating equations”

 $$
 \mathbf{X}^T \mathbf{y} = \mathbf{X}^T \hat{\beta}
 $$
Overall test

- Likelihood ratio test (G^2)
 - Compare *nested* models, similar to incremental F tests in OLS
 - Let \(\mathcal{L}_1 \) = maximized likelihood for our model
 \(\logit(\pi_i) = \beta_0 + \mathbf{x}_i^T \mathbf{\beta} \) \(\text{w/ k} \) predictors
 - Let \(\mathcal{L}_0 \) = maximized likelihood for null model
 \(\logit(\pi_i) = \beta_0 \) \(\text{under} \ H_0 : \beta_1 = \beta_2 = \cdots = \beta_k = 0 \)
 - Likelihood-ratio test statistic:
 \[
 G^2 = -2 \log \left(\frac{\mathcal{L}_0}{\mathcal{L}_1} \right) = 2(\log \mathcal{L}_1 - \log \mathcal{L}_0) \sim \chi^2_k
 \]

Wald tests and confidence intervals

- Analogous to t-tests in OLS
- \(H_0 : \beta_i = 0 \)
 \[
 z = \frac{b_k}{s(b_k)} \sim \mathcal{N}(0,1) \quad \text{or} \quad z^2 \sim \chi^2
 \]
- Confidence interval:
 \[
 b_k \pm z_{1-\alpha/2} s(b_k)
 \]

Visualizing

Plotting logistic regression data

Plotting a binary response together with a fitted logistic model can be difficult because the 0/1 response leads to much overplotting.

- Need to jitter the points
- Useful to show the fitted logistic curve
- Confidence band gives a sense of uncertainty
- Adding a non-parametric (loess) smooth shows possible nonlinearity
- NB: Can plot either on the response scale (probability) or the link scale (logit) where effects are linear
Types of plots

- **Conditional plots**: Stratified plot of Y or logit(Y) vs. one X, conditioned by other predictors—only that subset is plotted for each
- **Full-model plots**: plots of fitted response surface, showing all effects; usually shown in separate panels
- **Effect plots**: plots of predicted effects for terms in the model, averaged over predictors not involved in a given term.

Conditional plots with ggplot2

Plot of Arthritis treatment data, by Treatment (ignoring Sex)

```r
library(ggplot2)
gg <- ggplot(Arthritis, aes(Age, Better, color=Treatment)) +
  xlim(5, 95) + theme_bw() +
geom_point(position = position_jitter(height = 0.02, width = 0)) +
stat_smooth(method = "glm", family = binomial, alpha = 0.2,
aes(fill=Treatment), size=2.5, fullrange=TRUE)
gg # show the plot
```

Full-model plots

Full-model plots show the fitted values on the logit scale or on the response scale (probability), usually with confidence bands. This often requires a bit of custom programming.

Steps:

- Obtain fitted values with `predict(model, se.fit=TRUE)`—`type="link"` (logit) is the default
- Can use `type="response"` for probability scale
- Join this to your data (```cbind()```)
- Plot as you like: ```plot()```, ```ggplot()```, ...

```r
arth.fit2 <- cbind(Arthritis, predict(arth.logistic2, se.fit = TRUE))
head(arth.fit2[-9], 4)
```

The data is too thin for males to estimate each regression separately
Full-model plots

Plotting on the logit scale shows the additive effects of age, treatment and sex.

These plots show the data (jittered) as well as model uncertainty (confidence bands).

Models with interactions

Allow an interaction of Age x Sex

```
arth.logistic4 <- update(arth.logistic2, . ~ . + Age:Sex)
library(car)
Anova(arth.logistic4)
```

```
## Analysis of Deviance Table (Type II tests)

## Response: Better
##             LR Chisq Df Pr(>Chisq)
## I(Age - 50)     0.0        0
## Sex          6.981 1 0.00823 **
## Treatment   11.901 1 0.00056 ***
## Sex:Age    3.421 1 0.06430 .
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 .’ 1
```

Interaction is NS, but we can plot it the model anyway.

```
```

These plots show the data (jittered) as well as model uncertainty (confidence bands).
Models with interactions

The \texttt{visreg} package

- Provides a more convenient way to plot model results from the model object
- A consistent interface for linear models, generalized linear models, robust regression, etc.
- Shows the data as partial residuals or rug plots
- Can plot on the response or logit scale
- Can produce plots with separate panels for conditioning variables

- Only the model changes
- \texttt{predict()} automatically incorporates the revised model terms
- Plotting steps remain the same
- This interpretation is quite different!

\begin{verbatim}
library(visreg)
visreg(arth.logistic2, ylab="logit(Better)", ...)
\end{verbatim}

Effect plots: basic ideas

Show a given effect (and low-order relatives) controlling for other model effects.

Data

\begin{verbatim}
 x1 x2 sex x3\times2 y yhat
 1 1 F 1 1.1 4.73 4.66
 2 1 M 0 2 5.10 5.55
 3 1 F 0 4 6.10 5.34
 4 1 F 1 4.84 4.46
 5 2 F 0 4.73 4.40
 ...
 29 2 H 0 6.10 6.15
 30 3 F 1 6.71 7.14
\end{verbatim}

- Fit data: $x\beta \Rightarrow \hat{y}$
- Score data $x \cdot \hat{\beta} \Rightarrow \hat{y}^*$
 - plot vars: vary over range
 - control vars: fix at means

Score data

\begin{verbatim}
 x1 x2 sex x3\times2 y yhat*
 31 1 1 0.5 1 5.03 5.03
 32 2 1 0.5 2 4.97 4.97
 33 3 1 0.5 3 4.91 4.91
 34 1 2 0.5 2 5.43 5.43
 35 2 2 0.5 4 5.97 5.97
 36 3 2 0.5 6 7.31 7.31
\end{verbatim}

- One plot for each variable in the model
- Other variables: continuous— held fixed at median; factors— held fixed at most frequent value
- Partial residuals (r_j): the coefficient $\hat{\beta}_j$ in the full model is the slope of the simple fit of r_j on x_j.

{41/63}{42/63}
Effect plots for generalized linear models: Details

- For simple models, full model plots show the complete relation between response and all predictors.
- Fox(1987)— For complex models, often wish to plot a specific main effect or interaction (including lower-order relatives)— controlling for other effects

 - Fit full model to data with linear predictor (e.g., logit) \(\eta = X\beta \) and link function \(g(\mu) = \eta \rightarrow \) estimate \(\hat{b} \) of \(\beta \) and covariance matrix \(\hat{V}(\hat{b}) \) of \(\hat{b} \).
 - Construct “score data”
 - Vary each predictor in the term over its range
 - Fix other predictors at “typical” values (mean, median, proportion in the data)
 - \(\rightarrow \) “effect model matrix,” \(X^* \)
 - Use \texttt{predict()} on \(X^* \)
 - Calculate fitted effect values, \(\hat{\eta}^* = X^* \hat{b} \).
 - Standard errors are square roots of \(\text{diag} X^* \hat{V}(\hat{b}) X^*^T \)
 - Plot \(\hat{\eta}^* \), or values transformed back to scale of response, \(g^{-1}(\hat{\eta}^*) \).

- Note: This provides a general means to visualize interactions in all linear and generalized linear models.

Full model plots:

\texttt{arth.full <- Effect(c("Age", "Treatment", "Sex"), arth.logistic2)}
\texttt{plot(arth.full, multiline=TRUE, ci.style="bands", colors = c("red", "blue"), lwd=3, ...)}

Model with interaction of Age x Sex

\texttt{plot(allEffects(arth.logistic4), rows=1, cols=3)}

- Only the high-order terms for Treatment and Sex*Age need to be interpreted
- (How would you describe this?)
- The main effect of Age looks very different, averaged over Treatment and Sex
Case study: Arreests for Marijuana Possession

In Dec. 2002, the *Toronto Star* examined the issue of racial profiling, by analyzing a data base of 600,000+ arrest records from 1996-2002.

They focused on a subset of arrests for which police action was discretionary, e.g., simple possession of small quantities of marijuana, where the police could:
- Release the arrestee with a summons— like a parking ticket
- Bring to police station, hold for bail, etc.— harsher treatment

Response variable: released – Yes, No

Main predictor of interest: skin-colour of arrestee (black, white)

Arrests for Marijuana Possession: Data

Data

Control variables:
- year, age, sex
- employed, citizen – Yes, No
- checks — Number of police data bases (previous arrests, previous convictions, parole status, etc.) in which the arrestee’s name was found.

```r
library(effects) # for Arrests data
data(Arrrests) # for Anova()
some(Arrests)
```

```r
## 243  
## 514  
## 628  
## 671  
## 1278 
## 2015 
## 2162 
## 2632 
## 3240 
## 4324
```

![Graphical Statistics](image)

Man behind the numbers

... Which got turned into this infographic:

Same charge, different treatment

Statistical analysis of single drug possession charges shows that blacks are much less likely to be released at the scene and much more likely to be held in custody for a bail hearing. Darker colours represent a stronger statistical link between skin colour and police treatment.

- **Whites** are more likely to be released at the scene
- **Blacks** are much more likely to be held for bail hearings

Degree of likelihood
- Much less likely to occur
- Much more likely to occur
- More likely to occur

<table>
<thead>
<tr>
<th></th>
<th>Released at Scene</th>
<th>Released at Station</th>
<th>Held for Bail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whites</td>
<td>78%</td>
<td>14.5%</td>
<td>7.5%</td>
</tr>
<tr>
<td>Blacks</td>
<td>64%</td>
<td>20%</td>
<td>16%</td>
</tr>
</tbody>
</table>

SOURCE: Toronto police arrest records 1996-2000

Hey, they even spelled likelihood correctly!
Arrests for Marijuana Possession: Model

To allow possibly non-linear effects of year, we treat it as a factor:

```r
> Arrests$year <- as.factor(Arrests$year)
```

Logistic regression model with all main effects, plus interactions of colour:year and colour:age

```r
> arrests.mod <- glm(released ˜ employed + citizen + checks + colour * year + colour * age, family = binomial, data = Arrests)
```

```r
> Anova(arrests.mod)
```

Analysis of Deviance Table (Type II tests)

<table>
<thead>
<tr>
<th></th>
<th>LR Chisq</th>
<th>Df</th>
<th>Pr(>Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>employed</td>
<td>72.673</td>
<td>1</td>
<td>< 2.2e-16 ***</td>
</tr>
<tr>
<td>citizen</td>
<td>25.783</td>
<td>1</td>
<td>3.820e-07 ***</td>
</tr>
<tr>
<td>checks</td>
<td>205.211</td>
<td>1</td>
<td>< 2.2e-16 ***</td>
</tr>
<tr>
<td>year</td>
<td>6.087</td>
<td>5</td>
<td>0.2978477</td>
</tr>
<tr>
<td>age</td>
<td>0.459</td>
<td>1</td>
<td>0.4982736</td>
</tr>
<tr>
<td>colour:year</td>
<td>21.720</td>
<td>5</td>
<td>0.0005917 ***</td>
</tr>
<tr>
<td>colour:age</td>
<td>13.886</td>
<td>1</td>
<td>0.0001942 ***</td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Effect plots: colour

```r
> plot(Effect("colour", arrests.mod), ci.style="bands", ...)
```

- Effect plot for colour shows average effect controlling (adjusting) for all other factors simultaneously.
- (The *Star* analysis, controlled for these one at a time.)
- Evidence for different treatment of blacks and whites ("racial profiling").
- (Even Frances Nunziata could understand this.)
- NB: Effects smaller than claimed by the *Star*

Effect plots: Interactions

The story turned out to be more nuanced than reported by the *Toronto Star*, as shown in effect plots for interactions with colour.

```r
> plot(effect("colour:year", arrests.mod), multiline = TRUE, ...)
```

- Up to 2000, strong evidence for differential treatment of blacks and whites.
- Also evidence to support Police claim of effect of training to reduce racial effects in treatment.

```r
> plot(effect("colour:age", arrests.mod), multiline = TRUE, ...)
```

A more surprising finding:
- Opposite age effects for blacks and whites—
- Young blacks treated *more* harshly than young whites.
- Older blacks treated *less* harshly than older whites.
Effect plots: allEffects

All model effects can be viewed together using `plot(allEffects(mod))`

```r
> arrests.effects <- allEffects(arrests.mod, xlevels = list(age = seq(15, +
   45, 5)))
> plot(arrests.effects, ylab = "Probability(released)"
```

Model diagnostics

As in regression and ANOVA, the validity of a logistic regression model is threatened when:

- Important predictors have been omitted from the model
- Predictors assumed to be linear have non-linear effects on \(\text{Pr}(Y = 1) \)
- Important interactions have been omitted
- A few “wild” observations have a large impact on the fitted model or coefficients

Model specification: Tools and techniques

- Use non-parametric smoothed curves to detect non-linearity
- Consider using polynomial terms \((X^2, X^3, \ldots)\) or regression splines (e.g., `ns(X, 3)`)
- Use `update(model, ...)` to test for interactions— formula: \(. \sim .^2 \)

Diagnostic plots in R

In R, plotting a `glm` object gives the “regression quartet” — basic diagnostic plots

```r
arth.mod1 <- glm(Better ˜ Age + Sex + Treatment, data=Arthritis,
   family='binomial')
plot(arth.mod1)
```

Unusual data: Leverage and Influence

- “Unusual” observations can have dramatic effects on estimates in linear models
 - Can change the coefficients for the predictors
 - Can change the predicted values for all observations
- Three archetypal cases:
 - Typical X (low leverage), bad fit — Not much harm
 - Unusual X (high leverage), good fit — Not much harm
 - Unusual X (high leverage), bad fit — BAD, BAD, BAD
- Influential observations: unusual in both X and Y
- Heuristic formula:

\[
\text{Influence} = \text{Leverage}_X \times \text{Residual}_Y
\]

Better versions of these plots are available in the `car` package
Effect of adding one more point in simple linear regression (new point in blue)

Influence plots in R

library(car)
influencePlot(arth.logistic2)

Which cases are influential?

<table>
<thead>
<tr>
<th>ID</th>
<th>Treatment</th>
<th>Sex</th>
<th>Age</th>
<th>Better</th>
<th>StudRes</th>
<th>Hat</th>
<th>CookD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Treated</td>
<td>Male</td>
<td>27</td>
<td>1</td>
<td>1.922</td>
<td>0.08968</td>
<td>0.3358</td>
</tr>
<tr>
<td>15</td>
<td>Treated</td>
<td>Female</td>
<td>23</td>
<td>0</td>
<td>-1.183</td>
<td>0.14158</td>
<td>0.2049</td>
</tr>
<tr>
<td>39</td>
<td>Treated</td>
<td>Female</td>
<td>69</td>
<td>0</td>
<td>-2.171</td>
<td>0.03144</td>
<td>0.2626</td>
</tr>
</tbody>
</table>

- X axis: Leverage (“hat values”)
- Y axis: Studentized residuals
- Bubble size ~ Cook D (influence on coefficients)