Logistic Regression Model-based methods: Overview

Michael Friendly (Struetwre |

@ Explicitly assume some probability distribution for the data, e.g., binomial,

Psych 6136 Poisson, ...
@ Distinguish between the systematic component— explained by the
November 1, 2017 model— and a random component, which is not

@ Allow a compact summary of the data in terms of a (hopefully) small
number of parameters

Age*Treatment*Sex effect plot
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Overview Model-based methods Overview Model-based methods

Ioglm VS. gIm Comparing models with anova () and LRstats ()
anova (berk.modl, berk.mod2, test="Chisqg")

## LR tests for hierarchical log-linear models

##
With 1oglm () you can only test overall fit or difference between models ## Model 1:
## “Dept * (Gender + Admit)
berk.modl <- loglm(~ Dept * (Gender + Admit), data=UCBAdmissions) ## Model 2:
berk.mod2 <- loglm(~ (Admit + Dept + Gender) 2, data=UCBAdmissions) ## ~ (Admit + Dept + Gender) "2
anova (berk.mod2) ##
+# Deviance df Delta (Dev) Delta(df) P (> Delta (Dev)
## Call: ## Model 1 21.736 6
## loglm(formula = "~ (Admit + Dept + Gender) "2, data = UCBAdmissions) ## Model 2 20.204 5 1.5312 1 0.21593
#4 ## Saturated 0.000 O 20.2043 5 0.00114
## Statistics:
+# X2 df P(> X"2) LRstats (berk.modl, berk.mod2)
## Likelihood Ratio 20.204 5 0.0011441
## Pearson 18.823 5 0.0020740 ## Likelihood summary table:
#4# AIC BIC LR Chisqg Df Pr(>Chisq)
## berk.modl 217 238 21.7 6 0.0014 =*=
## berk.mod2 217 240 20.2 5 0.0011 =%
## ——
## Signif. codes: 0 'xxx' 0.001 '"%x' 0.01 'x' 0.05 '.'" 0.1 ' ' 1



Overview Model-based methods

Io%lm vs. glm

glm() you can test individual terms with anova () or car: :Anova ()

berkeley <- as.data.frame (UCBAdmissions)
berk.glm2 <- glm(Freq ~ (Dept+Gender+Admit) "2,
family="poisson")
test="Chisqg")

data=berkeley,

anova (berk.glm2,

## Analysis of Deviance Table

#4

## Model: poisson, link: log

#4

## Response: Freq

#4

## Terms added sequentially (first to last)

#4

##

#4# Df Deviance Resid. Df Resid. Dev Pr (>Chi)

## NULL 23 2650

## Dept 5 160 18 2491 <2e-16 xxx
## Gender 1 163 17 2328 <2e-16 *xx*
## Admit 1 230 16 2098 <2e-16 x*x
## Dept:Gender 5 1221 11 877 <2e-16 x*x
## Dept:Admit 5 855 6 22 <2e-16 *xx*
## Gender:Admit 1 2 5 20 0.22

## ——

## Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Overview Objects and methods

Objects and methods

How this works:
@ Model objects have a "class” attribute:
@ loglm(): "loglm"
@ glm():c("glm", "1m") — inherits also from 1m()
@ Class-specific methods have names like method.class, €.g.,
plot.glm(), mosaic.loglm()
@ Generic functions (print (), summary (), plot () ..
appropriate method for the class

.) call the

arth.mod <- glm(Better
class (arth.mod)

“ Age + Sex + Treatment, data=Arthritis)

## [l] "glm" "lm"

Overview

Fitting and graphing: Overview
Object-oriented approach in R:

fataframe multinom()

@ Fit model (obj <- glm(...

Fitting and graphing

= model

fmumgg)

object

plot(fimad))

)) — a model object

@ print (obj) and summary (obj) — numerical results
@ anova (obj) and Anova (obj) — tests for model terms
@ update (obj), addl (ob7j), dropl (ob7j) for model selection

Plot methods:

@ plot (ob7) often gives diagnostic plots

@ Other plot methods:

o Mosaic plots: mosaic (obj) for "1loglm" and "glm" objects
o Effect plots: plot (Effect (obj)) for nearly all linear models
o Influence plots (car): influencePlot (obj) for "glm" objects

Overview

Objects and methods

Methods for "g1m" objects:

library (MASS) ;
methods (class="glmn")

#4# [1] addl

## [4] Anova

## [7] avPlot

## [10] ceresPlot

## [13] coerce

## [16] cooks.distance
## [19] dropterm

## [22] family

## [25] influence

## [28] linearHypothesis
## [31] model.frame

## [34] ncvTest

## [37] print

## [40] residualPlot
## [43] rstandard

## [46] sieve

## [49] summary

## see '?methods’

library (vcdExtra)

addterm
asGnm

Boot

coefci
confidenceEllipse
deviance
effects
formula
initialize
logLik

modFit

nobs

profile
residualPlots
rstudent
sigmaHat

vcov

Objects and methods

anova

assoc
bootCase
coeftest
confint
dropl
extractAIC
gamma . shape
leveragePlot
mmp

mosaic
predict
qgPlot
residuals
show
slotsFromS3
weights

for accessing help and source code



Overview

Objects and methods
Some available plot () methods:

methods ("plot™)

## [1] plot,ANY-method plot
## [3] plot.aaregx* plot.
## [5] plot.ACF% plot.
#4 [7] plot.bcnPowerTransformx plot.
## [9] plot.coef.merx plot.
## [11] plot.correspondencex plot.
## [13] plot.data.framex plot.
## [15] plot.default plot.
## [17] plot.density= plot.
## [19] plot.eff~ plot.
## [21] plot.effpolyx plot
## [23] plot.formulax plot.
## [25] plot.gam= plot.
## [27] plot.gls= plot.
## [29] plot.goodfitx plot.
## [31] plot.hclustx plot
## [33] plot.HLtestx plot.
## [35] plot.intervals.lmList* plot.
## [37] plot.jam= plot.
## [39] plot.lmx plot.
## [41] plot.lmListx plot.
## [43] plot.lmListd.confintx plot.
## [45] plot.loglmx plot
## [47] plot.medpolishx* plot
## [49] plot.mjcax plot

Overview

Logistic regression models

Objects and methods

,color—-method
acfx
augPredx

cax*
compareFits*
cox.zphx*
decomposed.tsx*
dendrogram=*
ecdf
efflistx
.factor«
function
ggplotx

gnmx

gtablex
.histogramx
HoltWintersx
isoregx

ldax

Imex
ImList4x
loddsratiox
.mcax
.merModx
.mlmx

Modeling approaches

Response variable

@ Binary response: success/failure, vote: yes/no

@ Binomial data: x successes in ntrials (grouped data)
@ Ordinal response: none < some < severe depression
@ Polytomous response: vote Liberal, Tory, NDP, Green

Explanatory variables

@ Quantitative regressors: age, dose

@ Transformed regressors: ,/age, log(dose)

@ Polynomial regressors: age?, age®, - - -
@ Categorical predictors: treatment, sex (dummy variables, contrasts)

@ Interaction regessors: treatment x age, sex x age

This is exactly the same as in classical ANOVA, regression models

(or better: splines)
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Modeling approaches

Modeling approaches: Overview

[‘ Association models

J [’ Response models ]

Arthritis treatment data

* Loglinear models

(Contingency table form)

[Admit]GenderDept]

[AdmitReptllGenderDept]
[AdmitReptllAdmitGenderllGenderDept]

* Poisson GL.Ms

(Frequency data frame)
Freq ~ Admit + Gender*Dept

Freq ~ Admit*Dept + Gender*Dept
Freq ~ Admit*Dept + Admit*Gender +

GenderDept

* Ordered variables
Freq ~ right+left+Diag(ight left)
Freq ~ right+left+Symm(right Jeft

1.004

0.754

0.50 5

Better

0.25+

0.00 4

of %o

* Binary response

¢ Categorical predictors: Logit models
logittAdmit) ~ 1

logit(Admit) ~ Dept

logit(Admit) ~ Dept + Gender

* Continuous/mixed predictors:
Logistic regression models

Pr(Admit) ~ Dept + Age + GRE

* Polytomous response
* Ordinal: proportional odds model
Improve ~ Age + Sex + Treatment
* General: multihomial model

WomenWork ~ Kids + Husbandlnc
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@ The response variable, Tmproved
is ordinal: "None" < "Some" <
"Marked"

@ A binary logistic model can
consider just Better =
(Improved>"None")

@ Other important predictors: Sex,
Treatment

@ Main Q: how does treatment affect
outcome?

@ How does this vary with Age and
Sex?

@ This plot shows the binary
observations, with several
model-based smoothings
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Examples Examples

Berkeley admissions data Survival in the Donner Party
Modet: logiAamin = Dept Gender @ Admit/Reject can be considered a e
Je0 ) . survived L
2 binomial response for each Dept -
° and Gender @ Binary response: survived H H 1 o
. 1 175 o Logistic regression here iS ° Categorical predictors: SeX, = (TN - -
g :  analogous to an ANOVA model, family = =
§ ° T°¢8 but for log odds(Admit) @ Quantitative predictor: age =
9 i} @ (With categorical predictors, these @ Q: Is the effect of age linear? —=
8 122 are often called logit models) @ Q: Are there interactions among ED] Sex ’
3 i e Every such model has an predictors? T
” {10 equivalent loglinear model form. @ This is a generalized pairs plot,
.o This plot shows fitted logits for the with different plots for each pair
° ' main effects model, Dept +
~ ° Separtment - i Gender
13/63 14/63
Binary response Binary response
Binary response: What's wrong with OLS? OLS vs. Logistic regression
OLS regression: Logistic regression:
@ For a binary response, Y € (0, 1), * Assume y|x ~ N(0, 0%) * Assume Pr(y=1|x) ~ binomial(p)

want to predict 7 = Pr(Y = 1] x) to
@ A linear probability model uses
classical linear regression (OLS)
@ Problems: .
o Gives predicted values and Cls &
outside 0 <7 <1
@ Homogeneity of variance is

F”

violated: V(#) = (1 — ) # 00-
constant
o Inferences, hypothesis tests are
wrong! as
S

' ' '
25 50 75
Age Fig. 2.1. Graphical representation of a simple linear normal regression. Fig. 2.2. Craphical representation of a simple linear logistic regression.
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Binary response Logistic regression model

Logistic regression

@ Logistic regression avoids these
problems

@ Models logit(w;) = log[r/(1 —7)]  °

@ logit is interpretable as “log odds”
that Y =1

@ A related probit model gives very
similar results, but is less
interpretable 0251

@ For 0.2 < 7 < 0.8 fitted values are
close to those from linear
regression. 0001

' ' |
25 50 75
Age
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Binary response Logistic regression model

Logistic regression: One predictor

The coefficients of this model have simple interpretations in terms of odds and
log odds:

@ The odds can be expressed as a multiplicative model

odds(Y =1) = 1i(;(()x) = exp(a + fx) = e*(e°)~ . (1)

Thus:

@ S is the change in the log odds associated with a unit increase in x.

@ The odds are multiplied by e” for each unit increase in x.

@ «islog odds at x = 0; e~ is the odds of a favorable response at this
x-value.

@ In R, use exp (coef (obj) ) to get these values.

@ Another interpretation: In terms of probability, the slope of the logistic
regression curve is fr(1 — 7)

@ This has the maximum value 3/4 at = = }
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Binary response Logistic regression model

Logistic regression: One predictor

For a single quantitative predictor, x, the simple linear logistic regression
model posits a linear relation between the log odds (or logit) of Pr(Y = 1)
and x,

m(X)

logit[(x)] = log (1_7r()()> =a+Bx .

@ When g > 0, 7(x) and the log odds increase as x increases; when 5 < 0
they decrease with x.
@ This model can also be expressed as a model for the probabilities 7 (x)

;
1+ exp[—(a + BX)]

7(x) = logit™ ' [x(x)]
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Binary response Logistic regression model

Logistic regression models: Multiple predictors
@ For a binary response, Y € (0, 1), let x be a vector of p regressors, and
w; be the probability, Pr(Y = 1| x).
@ The logistic regression model is a linear model for the log odds, or logit
that Y = 1, given the values in x,

Iogit(w,-)zlog<17r" > = a+x'pB
= o+ B1Xq + BeXip + -+ BpXp

@ An equivalent (non-linear) form of the model may be specified for the
probability, 7;, itself,

7 = {1+exp(—la+x B])}

@ The logistic model is also a multiplicative model for the odds of “success,”

= exp(a+ x] B) = exp(a) exp(x] )

Increasing x; by 1 increases logit(r;) by 3;, and multiplies the odds by .

20/63



Fitting the logistic regression model

Logistic regression models are the special case of generalized linear models,

The summary () method gives details:

summary (arth.logistic)

fitin Rusing glm (..., family=binomial) i
For this example, we define Better as any improvement at all: ## call: o -
## glm(formula = Better ~ Age, family = binomial, data = Arthritis)
#4
data("Arthritis", package="vcd") 2L Devianes Residumalss
Arthritis$SBetter <— as.numeric (Arthritis$Improved > "None'") #4 Min 10  Median 30 Max
## -1.5106 -1.1277 0.0794 1.0677 1.7611
Fit and print: e .
## Coefficients:
. ) S
arth.logistic <- glm(Better ~ Age, data=Arthritis, family=binomial) Xﬁ (e EEEIEZET std 1Eg§§§ z Y;lz: Pr(o\éiz X
arth.logistic ## Age 0.0492 0.0194 2.54 0.011 *
## ——
i _ , , o ## Signif. codes: 0 's#%' 0.001 's+' 0.01 '+' 0.05 '.' 0.1 ' ' 1
## Call: glm(formula = Better ~ Age, family = binomial, data = Arthritis) B4
t ## (Dispersion parameter for binomial family taken to be 1)
## Coefficients: iy
## (Intercept) Age ## Null deviance: 116.45 on 83 degrees of freedom
i —2.6421 0.0452 ## Residual deviance: 109.16 on 82 degrees of freedom
ti ## AIC: 113.2
## Degrees of Freedom: 83 Total (i.e. Null); 82 Residual B
## Null Deviance: 116 ## Number of Fisher Scoring iterations: 4
## Residual Deviance: 109 AIC: 113
21/63

Binary response

Fitting Binary response Multiple predictors

Interpreting coefficients Multiple predictors

The main interest here is the effect of Treatment. Sex and Age are control

coef (arth.logistic) variables. Fit the main effects model (no interactions):

exp (coef (arth.logistic))

## (Intercept) Age ## (Intercept) Age .
##  -2.642071 0.049249 ## 0.071214 1.050482 logit(m;) = a + B1Xj1 + BaXiz + BaXiz
&g (1Useear (anth, legrsitle) 1) where x; is Age and x, and x3 are the factors representing sex and
su Age Treatment, respectively. R uses dummy (0/1) variables for factors.
## 1.6364 . .
Interpretations: o — { 0 if Female Xo — { 0 if Placebo
@ log odds(Better) increase by 3 = 0.0492 for each year of age 1 if Male 1 if Treatment

@ odds(Better) multiplied by e® = 1.05 for each year of age— a 5%

increase

@ over 10 years, odds(Better) are multiplied by exp(10 x 0.0492) = 1.64, a
64% increase.

@ Pr(Better) increases by 5/4 = 0.0123 for each year (near = = %)
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@ a doesn’t have a sensible interpretation here. Why?

@ (1: increment in log odds(Better) for each year of age.

@ [.: difference in log odds for male as compared to female.
@ f3: difference in log odds for treated vs. the placebo group
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Binary response

Multiple predictors

Multiple predictors: Fitting

Fit the main effects model. Use T (Age-50) to center Age, making «
interpretable.

arth.logistic2 <- glm(Better =~ I(Age—-50) + Sex + Treatment,
data=Arthritis, family=binomial)

coeftest () inImtest gives just the tests of coefficients provided by
summary () :

library (lmtest)
coeftest (arth.logistic?2)

##

## z test of coefficients:

##

## Estimate Std. Error z value Pr(>|z])

## (Intercept) -0.5781 0.3674 -1.57 0.116

## I(Age - 50) 0.0487 0.0207 2.36 0.018 =«

## SexMale -1.4878 0.5948 -2.50 0.012 =

## TreatmentTreated 1.7598 0.5365 3.28 0.001 »*x*

## ——

## Signif. codes: 0 'x*x' 0.001 "xx' 0.01 'x' 0.05 '."' 0.1 " " 1
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Binary response Multiple predictors

Interpreting coefficients

cbind (coef=coef (arth.logistic2),
OddsRatio=exp (coef (arth.logistic2)), exp(confint (arth.logistic2)))

## coef OddsRatio 2.5 % 97.5 %
## (Intercept) -0.5781 0.561 0.2647 1.132
## I(Age - 50) 0.0487 1.050 1.0100 1.096
## SexMale -1.4878 0.226 0.0652 0.689

## TreatmentTreated 1.7598 5.811 2.1187 17.727

@ o = —0.578: At age 50, females given placebo have odds(Better) of
e 0578 — 0.56.

@ (1 = 0.0487: Each year of age multiplies odds(Better) by %0487 = 1.05,
a 5% increase.

@ (> = —1.49: Males e~ 4% = 0.26 x less likely to show improvement as
females. (Or, females e'4° = 4.437 x more likely than males.)

@ (3 = 1.76: Treated e'7=5.81 x more likely Better than Placebo
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Hypothesis tests Hypothesis tests

Hypothesis testing: Questions

@ Overall test: How does my model, logit(7) = « + x'3 compare with the
null model, logit(7) = a?

Ho:B1=p2=--=0p=0

@ One predictor: Does x, significantly improve my model? Can it be
dropped?
Hy : Bx = 0 given other predictors retained

@ Lack of fit: How does my model compare with a perfect model (saturated
model)?

For ANOVA, regression, these tests are carried out using F-tests and f-tests.
In logistic regression (fit by maximum likelihood) we use

@ F-tests — likelihood ratio G? tests
@ t-tests — Wald z or x? tests

27/63

Maximum likelihood estimation

@ Likelihood, £ = Pr(data| model), as function of model parameters
@ For case /,

if Y =1
c ={ P. =p " (1-p")
1-p

fY 0 where

p; =1/ (1+exp(x,B))
@ Under independence, joint likelihood is the product over all cases

n
c=][p"(1-p")
i

@ — Find estimates B that maximize log L. lterative, but this solves the
“estimating equations”
X'y=X"p
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Hypothesis tests Hypothesis tests

Overall test Wald tests and confidence intervals
= Likelihood ratio test (G2) - ﬁ‘”a['fgogs to ttests in OLS
u k=

= Compare nested models, similar to incremental F o b, ] , ,

tests in OLS 2=5b) N(0.1) or zZ ~ 7
k

= et £, = maximized likelihood for our model . . . _ (Wald chi-square)

logit(7 )= 3, + X B Wi k predictors Confidence interval:

+
* Let £, = maximized likelihood for null model b £2, 250y )

logit(r,) = A, under Hy:p=p,=-=p5=0

Analysis of Maximum Likelihood Estimates
. le8|lh00d—ratl0 teSt StatlStlc €.g., Parameter DF Estimate Sta;::ig Chi~SqE::‘: Pr > ChiSq
5 L 5 Intercept 1 -4.5033 1.3074 11.8649 0.0006
_ 0 _ F. 1 1 1.4878 0.5948 6.2576 0.0124
G* = —2Iog L_] - 2(|Og L1 - Iog Lo ) ~ Xk ::e':at Ti::t:d 1 1.7598 [ 0.5365 10.7596 0.0010
1 age 1 0.0487 0.0207 5.5655 0.0183
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Hypothesis tests Visualizing
LR, Wald and score tests Plotting logistic regression data
Testing Global Null Hypothesis: BETA=0 Plotting a binary response together with a fitted logistic model can be difficult
S Chi-Square oF 5r > ChiSq because the 0/1 response leads to much overplottting.
Lkeiifiood Ramie oo : S o Need tojitter the points i . -
Wald 17.5147 3 0.0006 @ Useful to show the fitted logistic < SR
curve N
~ 3 @ Confidence band gives a sense of
. B B, =0 , ) -
g pleige R Tt Different ways to measure uncertainty g o
= [ : A departure fromH,: B=0 @ Adding a non-parametric (loess) f:;
+ LR test: diff in log L smooth shows possible S 31
| o ) nonlinearity
| « Wald test: (B—B;) @ NB: Can plot either on the S
i . Score test: slope at B =0 response scale (probability) orthe _ .
| link scale (logit) where effects are =1 * "7 & e mvit

lin ear 20 30 40 50 60 70 80

Age
wald Test
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Visualizing

Types of plots

@ Conditional plots: Stratified plot of Y or logit(Y) vs. one X, conditioned by
other predictors— only that subset is plotted for each

@ Full-model plots: plots of fitted response surface, showing all effects;
usually shown in separate panels

@ Effect plots: plots of predicted effects for terms in the model, averaged
over predictors not involved in a given term.

Female ‘ ‘ Male Female

1.00 1.00 IR B T 70

0.75+ 0.75

Treatment

0.50 4 Placebo 0.50 4

Better

= Treated

Probablllty (Bener)

0.254 0.25

0.004 0.004 :

25 50 75 25 50 75 30 40 50 60
Age
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Visualizing Conditional plots

Visualizing Conditional plots

Conditional plots with g g1plot2
Plot of Arthritis treatment data, by Treatment (ignoring Sex)

library (ggplot2)
gg <— ggplot (Arthritis, aes(Age,
xlim (5, 95) + theme_bw() +
geom_point (position = position_jitter (height = 0.02, width =
stat_smooth (method = "glm", family = binomial, alpha = 0.2,
aes (fill=Treatment), size=2.5, fullrange=TRUE)
gg # show the plot

Better, color=Treatment)) +

0)) +

05 Treatment

Placebo

Better

= Treated

0.0 ™ al . ., % %230 8 o

-0.5

25 50 75
Age
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Conditional plots with ggplot2

Conditional plot, faceted by Sex

gg + facet_wrap(  Sex)

Female Male

Treatment
Placebo

Better

 Treated

25 50 75 25 50 75
Age

The data is too thin for males to estimate each regression separately

35/63

Visualizing

Full-model plots

Full-model plots

Full-model plots show the fitted values on the logit scale or on the response
scale (probability), usually with confidence bands. This often requires a bit of
custom programming.

Steps:

@ Obtain fitted values with predict (model,
type="1ink" (logit) is the default

@ Can use type="response" for probability scale

@ Join this to your data (cbind ())

@ Plot as you like: plot (), ggplot (), ---

se.fit=TRUE)—

arth.fit2 <- cbind(Arthritis,

predict (arth.logistic2, se.fit = TRUE))
head (arth.fit2[,-91, 4)
## ID Treatment Sex Age Improved Better fit se.fit
## 1 57 Treated Male 27 Some 1 -1.43 0.758
## 2 46 Treated Male 29 None 0 -1.33 0.728
## 3 77 Treated Male 30 None 0 -1.28 0.713
## 4 17 Treated Male 32 Marked 1 -1.18 0.684
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Visualizing Full-model plots

Plotting with ggplot2 package

arth.fit2Sobs <= c (-4, 4 )[l+arth.fit2S$Better]

gg2 <— ggplot( arth.fit2,
geom_line (size = 2) +
geom_ribbon (aes (ymin

aes (x=Age, y=fit, color=Treatment)) +

fit - 1.96 % se.fit,
ymax fit + 1.96 « se.fit,
£ill Treatment), alpha = 0.2,
color = "transparent") +
labs (x = "Age", y = "Log odds (Better)") +
geom_point (aes (y=obs), position=position_jitter (height=0.25, width=0))
gg2 + facet_wrap(~ Sex)
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Visualizing Full-model plots

Full-model plots

Ploting on the probability scale may be simpler to interpret

Female H Male ‘
1.00 - LI . fa0ent et
~0.75 4
]
5
3] Treatment
=
2050 4 Placebo
% == Treated
Q
o
8 0.25 -
0.004 : N . s . ° . RS
U J 1 U J U 1 1 1 J
30 40 50 60 70 30 40 50 60 70
Age

These plots show the data (jittered) as well as model uncertainty (confidence
bands)
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Visualizing Full-model plots

Full-model plots

Ploting on the logit scale shows the additive effects of age, treatment and sex

‘ Female ‘ Male ‘

Treatment
Placebo
== Treated

Log odds (Better)
o
o
1

-25-

J i J J i J i i J i
30 40 50 60 70 30 40 50 60 70

Age

These plots show the data (jittered) as well as model uncertainty (confidence
bands)
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Visualizing Full-model plots

Models with interactions

Allow an interaction of Age x Sex

arth.logistic4 <- update(arth.logistic2, . + Age:Sex)
library (car)

Anova (arth.logistic4)

## Analysis of Deviance Table (Type II tests)

##

## Response: Better

## LR Chisqg Df Pr (>Chisq)

## I (Age — 50) 0

## Sex 6.98 1 0.00823 *x

## Treatment 11.90 1 0.00056 **x*

## Sex:Age 3.42 1 0.06430

## ———

## Signif. codes: 0 'x%xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

Interaction is NS, but we can plot it the model anyway
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Visualizing Full-model plots

Models with interactions

Female ‘

Male

=4
o
1

Treatment

Log odds (Better)

-2.54

-5.0-
30 40 50 60 70 30
Age

@ Only the model changes

@ predict () automatically incorporates the revised model terms

@ Plotting steps remain the same
@ This interpretation is quite different!

Visualizing visreg package

library (visregq)

40

Placebo
=== Treated

50 60 70

visreg(arth.logistic2, ylab="logit (Better)", ...)

logit(Better)
logit(Better)

logit(Better)

@ One plot for each variable in the model

@ Other variables: continuous— held fixed at median; factors— held fixed

at most frequent value

Treatment

The visreg package

regression, etc.
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Visualizing visreg package

Effect plots General ideas

Effect plots: basic ideas
Show a given effect (and low-order relatives) controlling for other model

e Partial residuals (r;): the coefficient 3; in the full model is the slope of the

simple fit of r; on x;.

Provides a more convenient way to plot model results from the model
object
A consistent interface for linear models, generalized linear models, robust

Shows the data as partial residuals or rug plots
Can plot on the response or logit scale
Can produce plots with separate panels for conditioning variables
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effects.
Data
xl x2 sex x1x2 v vhat * Fit data: XB =Yy
1 ALl F 1 4.73 4.46
2 2 1 M 0 6.10 5.55
Pl R G AR s XBow
3 21k g 4:13 4.40 * plot vars: vary over range
20| 2 2 M 0 6.10 6.15 * control vars: fix at means
30 3 2 F 1 6.71 7.14
Score data 2 effeetpio
x1 x2 [sex xl:x2 v vhat * Z
31 1 1] 0.5 1 NA 5.030 € 1
32 2 1| 0.5 2 NA 40971 [—
33 3 1] 0.5 3 A 4.912 plot e
34 Pz 0.5 2 NA 3.437
35 | 2 2| 0.5 4 NaA 5.574 :
36 3 2| 0.5 6 NA 7.710 ”
—— -
10 s 20 25 20
plotvars  control vars b
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Effect plots General ideas Effect plots Examples

Effect plots for generalized linear models: Details

@ For simple models, full model plots show the complete relation between Plotting main effects:

response and all predictors. e b A S eh)
@ Fox(1987)— For complex models, often wish to plot a specific main effect arth.eff2 <- allEffects(arth.logistic2)
or interaction (including lower-order relatives)— controlling for other plot (arth.eff2, rows=1, cols=3)
effects
Age effect plot Sex effect plot Treatment effect plot

o Fit full model to data with linear predictor (e.g., logit) n = X3 and link

function g(u) = n — estimate b of 3 and covariance matrix V(b) of b. T Y S x L L L

e Construct “score data” 08 g; il I 08 -
@ Vary each predictor in the term over its’ range _ o _ o054 I g; i i
@ Fix other predictors at “typical” values (mean, median, proportion in the data) % 04 % 0.4 - % 05 L
@ — “effect model matrix,” X* @ 02 @ 03+ r D 04 =

o Use predict () on X* 02 - + 03 B
@ Calculate fitted effect values, f* = X*b. , ‘ 02 1. iy
e Standard errors are square roots of diag X* V(b)X*T 20 30 40 50 60 70 Female Male Placebo Treated

e Plot 4", or values transformed back to scale of response, g~ (7). Age Sex Treatment

@ Note: This provides a general means to visualize interactions in all linear
and generalized linear models.
45/63 46/63

Effect plots Examples Effect plots Examples

Model with interaction of Age x Sex

Full model plots:
plot (allEffects(arth.logistic4), rows=1l, cols=3)

arth.full <- Effect(c("Age", "Treatment", "Sex"), arth.logistic2)

plot (arth.full, multiline=TRUE, ci.style="bands", colors = c("red' Age effect plot Treatment effect plot Sex*Age effect plot
"blue") ’ le=3, cel) L ‘2‘0 3‘0 4‘0 5‘0 6‘0 7\0
Sex = Female Sex = Male

Age*Treatment*Sex effect plot

0.9 - 08 r
20 30 40 50 60 70 = i L = 0.6 - r
I I I I I L I I I I I g 08 2 o84 L 5
Sex = Female Sex = Male & 064 L & 5 %7 i
- 07 2

0.95 — Treatment - 0.4 - L 0.2 r

0.90 Placebo
Treated 0.2 4 r
0.75 - 047
0.3

0.50 L 1T T W O YW TR TR VT T : . NRTTTINB W WA
0.25 L 20 30 40 50 60 70 Placebo Treated 20 30 40 50 60 70

' Age Treatment Age
0.10 -
0.05 -

QO ¢
o
1
T T T T

Better

@ Only the high-order terms for Treatment and Sex*Age need to be

I 11 S VT R TTNT TV TV TR T VR TV Y SN VT N W TU W TR TRV TAT T TTT IR iut | interpreted
20 w4 50 e 70 @ (How would you describe this?)
hoe @ The main effect of Age looks very different, averaged over Treatment and
Sex
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Case study: Arrests for Marijuana Possession

Context & background

@ In Dec. 2002, the Toronto Star examined the issue of racial profiling, by
analyzing a data base of 600,000+ arrest records from 1996-2002.

@ They focused on a subset of arrests for which police action was
discretionary, e.g., simple possession of small quantities of marijuana,
where the police could:

o Release the arrestee with a summons— like a parking ticket
@ Bring to police station, hold for bail, etc.— harsher treatment

@ Response variable: released — Yes, No
@ Main predictor of interest: skin-colour of arrestee (black, white)
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Case studies Arrests
... Which got turned into this infographic:

Same charge, different treatment
Statistical analysis of single drug possession charges shows Degree of likelihood
that blacks are much less likely to be released at the scene . Much less likely to occur
and much more likely to be held in custody for a bail hearing.
Darker colours represent a stronger statistical link between B Vuch more likely to occur
skin colour and police treatment. D More likely to ocour

Whites are more likely to be released at the scene
6662 | 78% 14.5%
charses | released at the scene released

at station

Blacks are much more likely to be held for bail hsarings
W ca% 20% . [
[aid released at the scene released at station  W{Tl Y]]

I I | I | I I |

0% 10 20 30 40 50 50 70 80 90 100

SOURCE: Toronto police arrest records 1996-2002
... Hey, they even spelled likelihood correctly!
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The Toronto Star meets mosaic displays...

B SECTION )BTRS WEDNESDAY, DECEMBER 11, 2002 % thestar.com

tace and Crime

i
York Michael Friendly's forthe Toronto Star’s series onracial profiling by city

Mén behind the numbers

Case studies Arrests

Arrests for Marijuana Possession: Data
Data
Control variables:
@ year, age, sex
@ employed, citizen —Yes, No
@ checks — Number of police data bases (previous arrests, previous

convictions, parole status, etc.) in which the arrestee’s name was found.

library (effects) # for Arrests data
library (car) # for Anova ()

data (Arrests)

some (Arrests)

## released colour year age sex employed citizen checks
## 243 Yes White 2000 18 Male Yes Yes 2
## 514 Yes White 1999 24 Male Yes Yes 1
## 628 Yes White 1997 19 Male Yes Yes 3
## 671 Yes White 2000 30 Male No Yes 1
## 1278 Yes Black 2002 21 Male No Yes 3
## 2015 Yes Black 2000 19 Male No Yes 4
## 2162 Yes Black 2000 27 Male Yes No 1
## 2632 No White 1997 28 Male No No 5
## 3240 Yes White 2000 28 Male Yes Yes 3
## 4324 Yes Black 1999 22 Male Yes No 0
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Case studies Arrests

Arrests for Marijuana Possession: Model

To allow possibly non-linear effects of year, we treat it as a factor:
> ArrestsS$Syear <- as.factor (Arrests$year)

Logistic regression model with all main effects, plus interactions of
colour:year and colour:age

> arrests.mod <- glm(released ~ employed + citizen + checks + colour =

+ year + colour x age, family = binomial, data = Arrests)
> Anova (arrests.mod)
Analysis of Deviance Table (Type II tests)
Response: released
LR Chisg Df Pr(>Chisq)
employed 72.673 1 < 2.2e-16 xxx*
citizen 25.783 1 3.820e-07 *xx
checks 205.211 1 < 2.2e-16 *#*+*
colour 19.572 1 9.687e-06 *x*x
year 6.087 5 0.2978477
age 0.459 1 0.4982736
colour:year 21.720 5 0.0005917 x*x*
colour:age 13.886 1 0.0001942 *x*x*
Signif. codes: 0 '"xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1
Case studies Arrests

Effect plots: Interactions

The story turned out to be more nuanced than reported by the Toronto Star,
as shown in effect plots for interactions with colour.

> plot (effect ("colour:year",

arrests.mod), multiline = TRUE, ...)

colour*year effect plot

0.88 , N ,

0.86 - A \ -
' @ Up to 2000, strong evidence fo

differential treatment of blacks
and whites

0.84 —

0.82

Probability(released)

A claim of effect of training to
reduce racial effects in treatme

0.8 o

0.78 —

colour
Black °
White --- A

0.76 —

T T T T T T
1997 1998 1999 2000 2001 2002

year
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r

@ Also evidence to support Police

nt
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Case studies Arrests

Effect plots: colour

plot (Effect ("colour", arrests.mod), ci.style="bands", ...)

0.88 1 I

@ Effect plot for colour shows
average effect controlling
(adjusting) for all other factors
simultaneously

0.86 o ,

@ (The Star analysis, controlled for
these one at a time.)

0.84 ,

@ — Evidence for different
treatment of blacks and whites
(“racial profiling”)

Probability(released)

0.82 1 I

@ (Even Frances Nunziata could
understand this.)

0.80 o [

@ NB: Effects smaller than claimed
by the Star

T T
Black White

Skin color of arrestee
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Case studies Arrests

Effect plots: Interactions

The story turned out to be more nuanced than reported by the Toronto Star,
as shown in effect plots for interactions with colour.

> plot (effect ("colour:age",

arrests.mod), multiline = TRUE, ...)

colour*age effect plot

colour
Black —— White = =

0.95 4 I

A more surprising finding:

@ Opposite age effects for blacks
and whites—

0.90 1

@ Young blacks treated more
harshly than young whites

Probability(released)

L @ Older blacks treated /ess harshly
than older whites

0.85 o

0.80 4

!IIII‘IIIIII‘IIIIFIIIIFIIII‘lllIlll‘IHI lIHI‘ Liim \‘H
20 25 30 35 40 45 50 55 60

Age
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Case studies Arrests Model diagnostics

Effect plots: allEffects Model diagnostics

All model effects can be viewed together using plot (allEffects (mod))

. affejgs-g)f)ffcm <- allBEffects(arrests.mod, xlevels = lList(age = seq(l5,  Agin regression and ANOVA, the validity of a logistic regression model is
> plot (a,rrests .effects, ylab = "Probability(released)") threatened When:
employed effect plot citizen effect plot checks effect plot (*] |mp0rtar‘lt predictors have been omitted from the model
- . - @ Predictors assumed to be linear have non-linear effects on Pr(Y = 1)
g L$ s @ Important interactions have been omitted
S Lz FoE T : : :
: -3 Fo3 @ A few “wild” observations have a large impact on the fitted model or
£ Fog | g coefficients
employed citzen checke Model specification: Tools and techniques
colour*year effect plot colour*age effect plot . . .
L momonononon L smmwsas @ Use non-parametric smoothed curves to detect non-linearity
g |, bk _coour-Whie | o colour: Black | colour . Whie @ Consider using polynomial terms (X2, X3, ...) or regression splines (e.g.,
S e | r ns (X, 3))
z EoE L i @ Use update (model, ...) to testforinteractions— formula: . ~ .2
§ : g 0.75
19‘919‘9&9‘990‘000‘020‘02‘ trT 1‘5 2‘0 2‘5 3“0 3‘5 4‘0 4‘5 e
year age
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Model diagnostics Model diagnostics Leverage and influence
Diagnostic plots in R Unusual data: Leverage and Influence
In R, plotting a g1m object gives the “regression quartet” — basic diagnostic
plots
arth.modl <- glm(Better - Age + Sex + Treatment, data—Arthritis), @ “Unusual” observations can have dramatic effects on estimates in linear
family="binomial') models

plot (arth.modl) e Can change the coefficients for the predictors

e Can change the predicted values for all observations

Residuals vs Fitted Normal Q-Q ., . Scale-Location Residuals vs Leverage @ Three archetypaj cases:
" = ] o % e o~ - gos2 Jo e Typical X (low leverage), bad fit — Not much harm
& . .

o \ L f*’ _ R N @ Unusual X (high leverage), good fit — Not much harm
. ° g P £ <7 g e’ e Unusual X (high leverage), bad fit — BAD, BAD, BAD
? " s 5 o1 ;:;.s 0 @ Influential observations: unusual in both X and Y

7 %\ i / g ° ] g ] A @ Heuristic formula:

> " A DO
" N o] T Ccocssaee | Influence = Leveragex x Residualy
2 a0 1 2 20 1 2 AV

Better versions of these plots are available in the car package
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Model diagnostics Leverage and influence

Model diagnostics

Leverage and influence

Effect of adding one more point in simple linear regression (new point in blue)

Model diagnostics Leverage and influence

¥ y
70 - 707 ;
. Original data a | Lowleverage, Outlier
{0-3
60 2 60 L

50 4 50
P
.
401 3 401
- -
| -
o
30 A 301
-
20 (e 204 e e e
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
X X
y y
70 70

High leverage, good fit | High leverage, Outlier

80 .5 601
50 507
40 401
30 o .
/ foL:
(] LI

20+
10 20 30 40 50 60 70 80 10 20 30 40 S0 60 70 80

Which cases are influential?

15
39

ID Treatment Sex Age Better StudRes Hat CookD
57 Treated Male 27 1 1.922 0.08968 0.3358
66 Treated Female 23 0 -1.183 0.14158 0.2049
11 Treated Female 69 0 -2.171 0.03144 0.2626
% o g ‘
- o o 8 °
R
% g -
e
°opo O@ O l@
o 0 20
8}3 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0.‘04 0.‘06 U.‘OS 0.‘10 0. ‘12 0.‘14

Hat-Values
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Influence plots in R

library (car)
influencePlot (arth.logisticZ2)

S¥eS) ©
= © 8
o o
o
0 ®
©
=1
=l
n
jo)
¥ © —frmmmmmmmmmmmmmmmmmmmmeee el
e
Q
N
5
g ~ .
E: o
@ 0o 9% ° @
&
(o)

0.04 0.06 0.08 0.10 0.12

Hat-Values

@ X axis: Leverage (“hat
values”)

@ Y axis: Studentized
residuals

@ Bubble size ~ Cook D
(influence on coefficients)
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