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Overview Model-based methods

Model-based methods: Overview

Structure
Explicitly assume some probability distribution for the data, e.g., binomial,
Poisson, ...
Distinguish between the systematic component— explained by the
model— and a random component, which is not
Allow a compact summary of the data in terms of a (hopefully) small
number of parameters

Advantages

Inferences: hypothesis tests and confidence intervals
Methods for model selection: adjust balance between goodness-of-fit and
parsimony
Predicted values give model-smoothed summaries for plotting
=⇒ Interpret the fitted model graphically
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Overview Fitting and graphing

Fitting and graphing: Overview
Object-oriented approach in R:

Fit model (obj <- glm(...)) → a model object
print(obj) and summary(obj)→ numerical results
anova(obj) and Anova(obj)→ tests for model terms
update(obj), add1(obj), drop1(obj) for model selection

Plot methods:
plot(obj) often gives diagnostic plots
Other plot methods:

Mosaic plots: mosaic(obj) for "loglm" and "glm" objects
Effect plots: plot(Effect(obj)) for nearly all linear models
Influence plots (car): influencePlot(obj) for "glm" objects
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Overview Objects and methods

Objects and methods

How this works:
Model objects have a ”class” attribute:

loglm(): "loglm"
glm(): c("glm", "lm") — inherits also from lm()

Class-specific methods have names like method.class, e.g.,
plot.glm(), mosaic.loglm()
Generic functions (print(), summary(), plot() . . . ) call the
appropriate method for the class

arth.mod <- glm(Better ˜ Age + Sex + Treatment, data=Arthritis)
class(arth.mod)

## [1] "glm" "lm"
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Overview Objects and methods

Objects and methods
Methods for "glm" objects
library(MASS); library(vcdExtra)
methods(class="glm")

## [1] add1.glm* addterm.glm*
## [3] anova.glm* Anova.glm*
## [5] asGnm.glm* assoc.glm
## [7] avPlot.glm* Boot.glm*
## [9] bootCase.glm* ceresPlot.glm*
## [11] coeftest.glm* confidenceEllipse.glm*
## [13] confint.glm* cooks.distance.glm*
## [15] deviance.glm* drop1.glm*
## [17] dropterm.glm* effects.glm*
## [19] extractAIC.glm* family.glm*
## [21] formula.glm* gamma.shape.glm*
## [23] influence.glm* leveragePlot.glm*
## [25] linearHypothesis.glm* logLik.glm*
## [27] mmp.glm* model.frame.glm*
## [29] modFit.glm mosaic.glm
## [31] ncvTest.glm* nobs.glm*
## [33] predict.glm print.glm*
## [35] profile.glm* qqPlot.glm*
## [37] residualPlot.glm* residualPlots.glm*
## [39] residuals.glm rstandard.glm*
## [41] rstudent.glm* sieve.glm
## [43] sigmaHat.glm* summarise.glm*
## [45] summary.glm vcov.glm*
## [47] weights.glm*
##
## Non-visible functions are asterisked
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Overview Objects and methods

Objects and methods
Some available plot() methods:
methods("plot")

## [1] plot.acf* plot.ACF*
## [3] plot.augPred* plot.coef.mer*
## [5] plot.compareFits* plot.correspondence*
## [7] plot.data.frame* plot.decomposed.ts*
## [9] plot.default plot.dendrogram*
## [11] plot.density* plot.ecdf
## [13] plot.eff* plot.efflist*
## [15] plot.effpoly* plot.factor*
## [17] plot.formula* plot.function
## [19] plot.gam* plot.ggplot*
## [21] plot.gls* plot.gnm*
## [23] plot.goodfit* plot.gtable*
## [25] plot.hclust* plot.histogram*
## [27] plot.HLtest* plot.HoltWinters*
## [29] plot.intervals.lmList* plot.isoreg*
## [31] plot.jam* plot.lda*
## [33] plot.lm* plot.lme*
## [35] plot.lmList* plot.lmList.confint*
## [37] plot.loddsratio* plot.loglm*
## [39] plot.mca* plot.medpolish*
## [41] plot.merMod* plot.mlm*
## [43] plot.mlm.efflist* plot.nffGroupedData*
## [45] plot.nfnGroupedData* plot.nls*
## [47] plot.nmGroupedData* plot.oddsratio*
## [49] plot.pdMat* plot.powerTransform*
## [51] plot.ppr* plot.prcomp*
## [53] plot.princomp* plot.profile*
## [55] plot.profile.gnm* plot.profile.nls*
## [57] plot.qv* plot.ranef.lme*
## [59] plot.ranef.lmList* plot.ranef.mer*
## [61] plot.ridgelm* plot.shingle*
## [63] plot.simulate.lme* plot.spec*
## [65] plot.spline* plot.stepfun
## [67] plot.stl* plot.structable*
## [69] plot.table* plot.trellis*
## [71] plot.ts plot.tskernel*
## [73] plot.TukeyHSD* plot.Variogram*
## [75] plot.xyVector* plot.zoo
##
## Non-visible functions are asterisked
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Overview Modeling approaches

Modeling approaches: Overview
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Overview Modeling approaches

Logistic regression models

Response variable

Binary response: success/failure, vote: yes/no
Binomial data: x successes in n trials (grouped data)
Ordinal response: none < some < severe depression
Polytomous response: vote Liberal, Tory, NDP, Green

Explanatory variables

Quantitative regressors: age, dose
Transformed regressors:

√
age, log(dose)

Polynomial regressors: age2, age3, · · · (or better: splines)
Categorical predictors: treatment, sex (dummy variables, contrasts)
Interaction regessors: treatment × age, sex × age

This is exactly the same as in classical ANOVA, regression models
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Examples

Arthritis treatment data
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The response variable, Improved
is ordinal: "None" < "Some" <
"Marked"
A binary logistic model can
consider just Better =
(Improved>"None")
Other important predictors: Sex,
Treatment
Main Q: how does treatment affect
outcome?
How does this vary with Age and
Sex?
This plot shows the binary
observations, with several
model-based smoothings
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Examples

Berkeley admissions data

.05

.10

.25

.50

.75

.90
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Admit/Reject can be considered a
binomial response for each Dept
and Gender
Logistic regression here is
analogous to an ANOVA model,
but for log odds(Admit)
(With categorical predictors, these
are often called logit models)
Every such model has an
equivalent loglinear model form.
This plot shows fitted logits for the
main effects model, Dept +
Gender
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Examples

Survival in the Donner Party

Binary response: survived
Categorical predictors: sex,
family
Quantitative predictor: age
Q: Is the effect of age linear?
Q: Are there interactions among
predictors?
This is a generalized pairs plot,
with different plots for each pair

survived
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Binary response

Binary response: What’s wrong with OLS?

For a binary response, Y ∈ (0,1),
want to predict π = Pr(Y = 1 | x)
A linear probability model uses
classical linear regression (OLS)
Problems:

Gives predicted values and CIs
outside 0 ≤ π ≤ 1
Homogeneity of variance is
violated: V(π̂) = π̂(1− π̂) 6=
constant
Inferences, hypothesis tests are
wrong!
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Binary response

OLS vs. Logistic regression
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Binary response Logistic regression model

Logistic regression

Logistic regression avoids these
problems
Models logit(πi) ≡ log[π/(1− π)]
logit is interpretable as “log odds”
that Y = 1
A related probit model gives very
similar results, but is less
interpretable
For 0.2 ≤ π ≤ 0.8 fitted values are
close to those from linear
regression.
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Binary response Logistic regression model

Logistic regression: One predictor

For a single quantitative predictor, x , the simple linear logistic regression
model posits a linear relation between the log odds (or logit) of Pr(Y = 1)
and x ,

logit[π(x)] ≡ log
(

π(x)
1− π(x)

)
= α+ βx .

When β > 0, π(x) and the log odds increase as x increases; when β < 0
they decrease with x .
This model can also be expressed as a model for the probabilities π(x)

π(x) = logit−1[π(x)] =
1

1 + exp[−(α+ βx)]
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Binary response Logistic regression model

Logistic regression: One predictor

The coefficients of this model have simple interpretations in terms of odds and
log odds:

The odds can be expressed as a multiplicative model

odds(Y = 1) ≡ π(x)
1− π(x) = exp(α+ βx) = eα(eβ)x . (1)

Thus:
β is the change in the log odds associated with a unit increase in x .
The odds are multiplied by eβ for each unit increase in x .
α is log odds at x = 0; eα is the odds of a favorable response at this
x-value.
In R, use exp(coef(obj)) to get these values.
Another interpretation: In terms of probability, the slope of the logistic
regression curve is βπ(1− π)
This has the maximum value β/4 at π = 1

2
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Binary response Logistic regression model

Logistic regression models: Multiple predictors
For a binary response, Y ∈ (0,1), let x be a vector of p regressors, and
πi be the probability, Pr(Y = 1 |x).
The logistic regression model is a linear model for the log odds, or logit
that Y = 1, given the values in x ,

logit(πi) ≡ log
(

πi

1− πi

)
= α+ xT

i β

= α+ β1xi1 + β2xi2 + · · ·+ βpxip

An equivalent (non-linear) form of the model may be specified for the
probability, πi , itself,

πi = {1 + exp(−[α+ xT
i β])}−1

The logistic model is also a multiplicative model for the odds of “success,”

πi

1− πi
= exp(α+ xT

i β) = exp(α)exp(xT
i β)

Increasing xij by 1 increases logit(πi) by βj , and multiplies the odds by eβj .
17 / 60

Binary response Fitting

Fitting the logistic regression model
Logistic regression models are the special case of generalized linear models,
fit in R using glm(..., family=binomial)
For this example, we define Better as any improvement at all:

data("Arthritis", package="vcd")
Arthritis$Better <- as.numeric(Arthritis$Improved > "None")

Fit and print:

arth.logistic <- glm(Better ˜ Age, data=Arthritis, family=binomial)
arth.logistic

##
## Call: glm(formula = Better ˜ Age, family = binomial, data = Arthritis)
##
## Coefficients:
## (Intercept) Age
## -2.6421 0.0492
##
## Degrees of Freedom: 83 Total (i.e. Null); 82 Residual
## Null Deviance: 116
## Residual Deviance: 109 AIC: 113
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The summary() method gives details:

summary(arth.logistic)

##
## Call:
## glm(formula = Better ˜ Age, family = binomial, data = Arthritis)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5106 -1.1277 0.0794 1.0677 1.7611
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.6421 1.0732 -2.46 0.014 *
## Age 0.0492 0.0194 2.54 0.011 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 116.45 on 83 degrees of freedom
## Residual deviance: 109.16 on 82 degrees of freedom
## AIC: 113.2
##
## Number of Fisher Scoring iterations: 4

Binary response Fitting

Interpreting coefficients

coef(arth.logistic)

## (Intercept) Age
## -2.642071 0.049249

exp(coef(arth.logistic))

## (Intercept) Age
## 0.071214 1.050482

exp(10*coef(arth.logistic)[2])

## Age
## 1.6364

Interpretations:
log odds(Better) increase by β = 0.0492 for each year of age
odds(Better) multiplied by eβ = 1.05 for each year of age— a 5%
increase
over 10 years, odds(Better) are multiplied by exp(10× 0.0492) = 1.64, a
64% increase.
Pr(Better) increases by β/4 = 0.0123 for each year (near π = 1

2 )

20 / 60



Binary response Multiple predictors

Multiple predictors

The main interest here is the effect of Treatment. Sex and Age are control
variables. Fit the main effects model (no interactions):

logit(πi) = α+ β1xi1 + β2xi2 + β2xi2

where x1 is Age and x2 and x3 are the factors representing Sex and
Treatment, respectively. R uses dummy (0/1) variables for factors.

x2 =

{
0 if Female
1 if Male x3 =

{
0 if Placebo
1 if Treatment

α doesn’t have a sensible interpretation here. Why?
β1: increment in log odds(Better) for each year of age.
β2: difference in log odds for male as compared to female.
β3: difference in log odds for treated vs. the placebo group
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Binary response Multiple predictors

Multiple predictors: Fitting
Fit the main effects model. Use I(Age-50) to center Age, making α
interpretable.

arth.logistic2 <- glm(Better ˜ I(Age-50) + Sex + Treatment,
data=Arthritis, family=binomial)

coeftest() in lmtest gives just the tests of coefficients provided by
summary():

library(lmtest)
coeftest(arth.logistic2)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.5781 0.3674 -1.57 0.116
## I(Age - 50) 0.0487 0.0207 2.36 0.018 *
## SexMale -1.4878 0.5948 -2.50 0.012 *
## TreatmentTreated 1.7598 0.5365 3.28 0.001 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Binary response Multiple predictors

Interpreting coefficients

cbind(coef=coef(arth.logistic2),
OddsRatio=exp(coef(arth.logistic2)), exp(confint(arth.logistic2)))

## coef OddsRatio 2.5 % 97.5 %
## (Intercept) -0.5781 0.561 0.2647 1.132
## I(Age - 50) 0.0487 1.050 1.0100 1.096
## SexMale -1.4878 0.226 0.0652 0.689
## TreatmentTreated 1.7598 5.811 2.1187 17.727

α = −0.578: At age 50, females given placebo have odds(Better) of
e−0.578 = 0.56.
β1 = 0.0487: Each year of age multiplies odds(Better) by e0.0487 = 1.05,
a 5% increase.
β2 = −1.49: Males e−1.49 = 0.26 × less likely to show improvement as
females. (Or, females e1.49 = 4.437 × more likely than males.)
β3 = 1.76: Treated e1.76=5.81 × more likely Better than Placebo
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Hypothesis tests

Hypothesis testing: Questions

Overall test: How does my model, logit(π) = α+ xTβ compare with the
null model, logit(π) = α?

H0 : β1 = β2 = · · · = βp = 0

One predictor: Does xk significantly improve my model? Can it be
dropped?

H0 : βk = 0 given other predictors retained

Lack of fit: How does my model compare with a perfect model (saturated
model)?

For ANOVA, regression, these tests are carried out using F -tests and t-tests.
In logistic regression (fit by maximum likelihood) we use

F -tests→ likelihood ratio G2 tests
t-tests→Wald z or χ2 tests
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Hypothesis tests

Maximum likelihood estimation

Likelihood, L = Pr(data |model), as function of model parameters
For case i ,

Under independence, joint likelihood is the product over all cases

L =
n∏

i

pYi
i (1− pYi

i )

=⇒ Find estimates β̂ that maximize logL. Iterative, but this solves the
“estimating equations”

X Ty = X Tp̂
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Hypothesis tests

Overall test
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Hypothesis tests

Wald tests and confidence intervals
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Hypothesis tests

LR, Wald and score tests
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Visualizing

Plotting logistic regression data

Plotting a binary response together with a fitted logistic model can be difficult
because the 0/1 response leads to much overplottting.

Need to jitter the points
Useful to show the fitted logistic
curve
Confidence band gives a sense of
uncertainty
Adding a non-parametric (loess)
smooth shows possible
nonlinearity
NB: Can plot either on the
response scale (probability) or the
link scale (logit) where effects are
linear
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Visualizing

Types of plots
Conditional plots: Stratified plot of Y or logit(Y) vs. one X, conditioned by
other predictors— only that subset is plotted for each
Full-model plots: plots of fitted response surface, showing all effects;
usually shown in separate panels
Effect plots: plots of predicted effects for terms in the model, averaged
over predictors not involved in a given term.
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Visualizing Conditional plots

Conditional plots with ggplot2
Plot of Arthritis treatment data, by Treatment (ignoring Sex)

library(ggplot2)
gg <- ggplot(Arthritis, aes(Age, Better, color=Treatment)) +

xlim(5, 95) + theme_bw() +
geom_point(position = position_jitter(height = 0.02, width = 0)) +
stat_smooth(method = "glm", family = binomial, alpha = 0.2,

aes(fill=Treatment), size=2.5, fullrange=TRUE)
gg # show the plot
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Visualizing Conditional plots

Conditional plots with ggplot2

Conditional plot, faceted by Sex

gg + facet_wrap(˜ Sex)
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The data is too thin for males to estimate each regression separately
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Visualizing Full-model plots

Full-model plots
Full-model plots show the fitted values on the logit scale or on the response
scale (probability), usually with confidence bands. This often requires a bit of
custom programming.
Steps:

Obtain fitted values with predict(model, se.fit=TRUE)—
type="link" (logit) is the default
Can use type="response" for probability scale
Join this to your data (cbind())
Plot as you like: plot(), ggplot(), · · ·

arth.fit2 <- cbind(Arthritis,
predict(arth.logistic2, se.fit = TRUE))

head(arth.fit2[,-9], 4)

## ID Treatment Sex Age Improved Better fit se.fit
## 1 57 Treated Male 27 Some 1 -1.43 0.758
## 2 46 Treated Male 29 None 0 -1.33 0.728
## 3 77 Treated Male 30 None 0 -1.28 0.713
## 4 17 Treated Male 32 Marked 1 -1.18 0.684
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Visualizing Full-model plots

Plotting with ggplot2 package

arth.fit2$obs <- c(-4, 4 )[1+arth.fit2$Better]

gg2 <- ggplot( arth.fit2, aes(x=Age, y=fit, color=Treatment)) +
geom_line(size = 2) +
geom_ribbon(aes(ymin = fit - 1.96 * se.fit,

ymax = fit + 1.96 * se.fit,
fill = Treatment), alpha = 0.2,

color = "transparent") +
labs(x = "Age", y = "Log odds (Better)") +
geom_point(aes(y=obs), position=position_jitter(height=0.25, width=0))

gg2 + facet_wrap(˜ Sex)
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Visualizing Full-model plots

Full-model plots

Ploting on the logit scale shows the additive effects of age, treatment and sex
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These plots show the data (jittered) as well as model uncertainty (confidence
bands)
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Visualizing Full-model plots

Full-model plots

Ploting on the probability scale may be simpler to interpret
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These plots show the data (jittered) as well as model uncertainty (confidence
bands)
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Visualizing Full-model plots

Models with interactions

Allow an interaction of Age x Sex

arth.logistic4 <- update(arth.logistic2, . ˜ . + Age:Sex)
Anova(arth.logistic4)

## Analysis of Deviance Table (Type II tests)
##
## Response: Better
## LR Chisq Df Pr(>Chisq)
## I(Age - 50) 0
## Sex 6.98 1 0.00823 **
## Treatment 11.90 1 0.00056 ***
## Sex:Age 3.42 1 0.06430 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interaction is NS, but we can plot it the model anyway
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Visualizing Full-model plots

Models with interactions
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Only the model changes
predict() automatically incorporates the revised model terms
Plotting steps remain the same
This interpretation is quite different!
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Visualizing visreg package

The visreg package

Provides a more convenient way to plot model results from the model
object
A consistent interface for linear models, generalized linear models, robust
regression, etc.
Shows the data as partial residuals or rug plots
Can plot on the response or logit scale
Can produce plots with separate panels for conditioning variables
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Visualizing visreg package

library(visreg)
visreg(arth.logistic2, ylab="logit(Better)", ...)
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One plot for each variable in the model
Other variables: continuous— held fixed at median; factors— held fixed
at most frequent value
Partial residuals (rj ): the coefficient β̂j in the full model is the slope of the
simple fit of rj on xj .
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Effect plots General ideas

Effect plots: basic ideas
Show a given effect (and low-order relatives) controlling for other model
effects.
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Effect plots General ideas

Effect plots for generalized linear models: Details

For simple models, full model plots show the complete relation between
response and all predictors.
Fox(1987)— For complex models, often wish to plot a specific main effect
or interaction (including lower-order relatives)— controlling for other
effects

Fit full model to data with linear predictor (e.g., logit) η = Xβ and link
function g(µ) = η → estimate b of β and covariance matrix V̂ (b) of b.
Construct “score data”

Vary each predictor in the term over its’ range
Fix other predictors at “typical” values (mean, median, proportion in the data)
→ “effect model matrix,” X∗

Use predict() on X∗

Calculate fitted effect values, η̂∗ = X∗b.
Standard errors are square roots of diag X∗V̂ (b)X∗T

Plot η̂∗, or values transformed back to scale of response, g−1(η̂∗).

Note: This provides a general means to visualize interactions in all linear
and generalized linear models.
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Effect plots Examples

Plotting main effects:

library(effects)
arth.eff2 <- allEffects(arth.logistic2)
plot(arth.eff2, rows=1, cols=3)

Age effect plot
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Effect plots Examples

Full model plots:

arth.full <- Effect(c("Age", "Treatment", "Sex"), arth.logistic2)
plot(arth.full, multiline=TRUE, ci.style="bands", colors = c("red",
"blue"), lwd=3, ...)

Age*Treatment*Sex effect plot
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Effect plots Examples

Model with interaction of Age x Sex

plot(allEffects(arth.logistic4), rows=1, cols=3)

Age effect plot

Age

B
et

te
r

0.2

0.3

0.4

0.5

0.6

0.7

0.8

30 35 40 45 50 55 60 65 70

Treatment effect plot

Treatment

B
et

te
r

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Placebo Treated

●

●

Sex*Age effect plot

Age

B
et

te
r

0.2

0.4

0.6

0.8

303540455055606570

 : Sex Female

303540455055606570

 : Sex Male

Only the high-order terms for Treatment and Sex*Age need to be
interpreted
(How would you describe this?)
The main effect of Age looks very different, averaged over Treatment and
Sex
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Case studies Arrests

Case study: Arrests for Marijuana Possession
Context & background

In Dec. 2002, the Toronto Star examined the issue of racial profiling, by
analyzing a data base of 600,000+ arrest records from 1996-2002.
They focused on a subset of arrests for which police action was
discretionary, e.g., simple possession of small quantities of marijuana,
where the police could:

Release the arrestee with a summons— like a parking ticket
Bring to police station, hold for bail, etc.— harsher treatment

Response variable: released – Yes, No

Main predictor of interest: skin-colour of arrestee (black, white)
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The Toronto Star meets mosaic displays...
Case studies Arrests

... Which got turned into this infographic:

Product:STAR Date:12-11-2002Desk: NEW-0001-CMYK/10-12-02/23:51:45

BETSY POWELL
STAFF REPORTER

York University professor Mi-
chael Friendly’s expertise in sta-
tistics has led him to an unac-
customed role — in the midst of
a controversy over alleged racial
profiling by city police.

It was Friendly’s analysis that
confirmed the Star had correct-
ly interpreted several years of
police arrest statistics. The Star
used the statistics as its basis in a
series of stories showing that
blacks have been treated more
harshly than whites by city po-
lice. 

Police Chief Julian Fantino
and the police services board
had challenged the accuracy of
the Star’s interpretation. Yes-
terday, Friendly and members
of the police board came to the
Star’s offices to discuss the
methodology behind the series.

Friendly, a psychology profes-
sor, has been immersed in sta-
tistics since the mid-1960s
when he was awarded a fellow-
ship to Princeton University
where he studied under world-
renowned statistician John W.
Tukey.

“He (Tukey) was leading what
seemed to be a new revolution
in the field of statistics . . . what
he called exploratory data anal-
ysis,” explains Friendly. “The
idea there was that rather than
using only formal mathematical
methods one could use power-
ful, graphical techniques to
show patterns and trends to see
what your data seems to be say-
ing beyond just the formal as-
pects of it. I was really captivat-
ed by that.”

In September, the Star ap-
proached Friendly to review its
methodology and findings in its
investigation into race and

crime. “I don’t usually take a lot
of outside consulting, but that’s
mainly because my focus is on
my research and writing. But I
was interested and intrigued by
the project,” Friendly said.

The Star series concluded that
blacks were treated more harsh-
ly than whites based on infor-
mation obtained from the To-
ronto police database docu-
menting criminal and traffic
charges laid since late 1996. 

The series specifically looked
at two areas: simple drug pos-
session and Highway Traffic Act
stops.

Using the same data, Friendly

did his own analysis and found
“that the findings in the Star are
accurate.”

Police leaders attacked the se-
ries after it was published in Oc-
tober and last month the police
services board accepted Star
publisher John Honderich’s in-
vitation to meet to discuss the
findings and methodology. That
private meeting took place yes-
terday at the Star with Friendly
in attendance.

The 57-year-old father of two
is not used to the limelight.

“Most of my consulting work is
to researchers working in the
social sciences, but also in medi-

cine, nursing, biology, etc. One
recent project concerned an at-
tempt to develop a statistical
model to explain whether and
how much parents save for their
children’s education.” He has al-
so done work for groups con-
cerned with child care and other
social policy matters.

That may all sound dry and
daunting. But in his most recent
book, Visualizing Categorical
Data (2000), Friendly cited sta-
tistics relating to Titanic survi-
vors. 

“People think women and chil-
dren first,” he says. But after an-
alyzing the doomed vessel’s de-
tailed passenger list, Friendly
concluded a high percentage of
the well-heeled travelling in
first class had also survived.

Friendly, who has received nu-
merous research grants since
1973, is the author of The SAS
System for Statistical Graphics
and Visualizing Categorical Da-
ta, and associate editor of Jour-
nal of Computational and
Graphical Statistics.

The native New Yorker’s jour-
ney into the world of statistics
began as an undergraduate ma-
joring in math at the Rensselaer
Polytechnic Institute in Troy,
N.Y. Fond of applied math,
Friendly was awarded the psy-
chometric fellowship in 1966,
which took him to Princeton
University. 

Psychometrics is the science of
measuring mental capacities
and processes.

VINCE TALOTTA/TORONTO STAR

York University professor Michael Friendly’s expert statistical analysis provided confirmation for the Toronto Star’s series on racial profiling by city police.

Man behind the numbers
Statistical analysis of single drug possession charges shows
that blacks are much less likely to be released at the scene
and much more likely to be held in custody for a bail hearing.
Darker colours represent a stronger statistical link between
s

Same charge, different treatment
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Statistics expert
played key role in
race, crime series
Met with police
board yesterday 
to discuss findings

‰ Please see Expert, B3

GTA Editor Jim Hanney was
a wild man who won a
standing ovation from
an entire newsroom. B5
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B SECTION WEDNESDAY, DECEMBER 11, 2002 H thestar.com

Streetcar-only lane proposed for St. Clair. B2 / Deaths, Births. B6-7

LAURIE MONSEBRAATEN
GTA BUREAU CHIEF

No charges will be laid against
prominent Toronto lawyer-lob-
byist Jeff Lyons in an alleged
case of improper campaign con-
tributions during the 2000 mu-
nicipal election, the Ontario
Provincial Police said yesterday.

“Investigators from the anti-
rackets section interviewed
over 60 witnesses and executed
several search warrants during
this extensive investigation,”
the OPP said in a statement.

After consultation with the
provincial Crown Law Office,
Criminal, the OPP “determined
that there are no reasonable
grounds for the laying of charges
under the Municipal Elections
Act,” the statement said.

Reached at his consulting of-
fice yesterday, Lyons, who has
steadfastly denied the allega-
tions, said he is glad the investi-
gation is over. 

“I didn’t have any doubt about
the outcome. I will continue as I
have for over 30 years to be of
service to the community.”

He refused to make any further
comment on the matter.

The probe was sparked last
May after the Star reported that
a former employee of Lyons
swore out an affidavit that said
he gave her a cheque for $15,000
prior to the 2000 municipal
election, and told her to deposit
it in her bank account and make
donations to city council candi-
dates at his direction.

Susan Cross, who now works
as an executive assistant to
Councillor Jane Pitfield, said in
her affidavit she donated
$13,600 of money to the cam-
paigns of various candidates at
the direction of Lyons.

The Municipal Elections Act
states that, “a contributor shall
not make a contribution that
does not belong to the contrib-
utor,” and that each offence is
punishable by a fine of up to
$5,000.

Lyons denied in an interview
last May that he had given Cross
any money to make political do-
nations, insisting that she must
have contributed her own cash.

But Detective-Superintendent
William Crate, head of the
OPP’s anti-racket section, said
investigators confirmed Lyons
was involved in making so-
called third party contributions
in contravention of the act. 

However, Crate added, investi-
gators concluded it was a tech-
nical violation and didn’t result
in any duplicate campaign do-
nations.

“The violation was viewed to
be merely technical and that
there was no harm to the public
and that no one gained by it,”
Crate said.

“So it was felt that we probably
would be unsuccessful in court.”

OPP
won’t
charge
lobbyist 
Jeff Lyons glad
investigation over
Campaign
donations probed

Race and Crime

... Hey, they even spelled likelihood correctly!
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Case studies Arrests

Arrests for Marijuana Possession: Data
Data
Control variables:

year, age, sex
employed, citizen – Yes, No
checks — Number of police data bases (previous arrests, previous
convictions, parole status, etc.) in which the arrestee’s name was found.

library(effects) # for Arrests data
library(car) # for Anova()
data(Arrests)
some(Arrests)

## released colour year age sex employed citizen checks
## 299 Yes Black 2001 24 Male Yes Yes 3
## 766 Yes White 2000 18 Male Yes Yes 2
## 1530 Yes White 2000 14 Male Yes Yes 0
## 2367 Yes White 1999 23 Male Yes Yes 0
## 2619 No White 2001 22 Male Yes Yes 2
## 2664 No Black 1998 38 Male Yes No 3
## 4202 No White 2001 47 Female No Yes 1
## 4206 Yes Black 1999 26 Male No Yes 0
## 4323 Yes Black 1999 22 Male No Yes 6
## 5102 Yes White 2000 19 Male Yes Yes 0

49 / 60

Case studies Arrests

Arrests for Marijuana Possession: Model

To allow possibly non-linear effects of year, we treat it as a factor:
1 > Arrests$year <- as.factor(Arrests$year)

Logistic regression model with all main effects, plus interactions of
colour:year and colour:age

1 > arrests.mod <- glm(released ˜ employed + citizen + checks + colour *
2 + year + colour * age, family = binomial, data = Arrests)
3 > Anova(arrests.mod)

1 Analysis of Deviance Table (Type II tests)
2

3 Response: released
4 LR Chisq Df Pr(>Chisq)
5 employed 72.673 1 < 2.2e-16 ***
6 citizen 25.783 1 3.820e-07 ***
7 checks 205.211 1 < 2.2e-16 ***
8 colour 19.572 1 9.687e-06 ***
9 year 6.087 5 0.2978477

10 age 0.459 1 0.4982736
11 colour:year 21.720 5 0.0005917 ***
12 colour:age 13.886 1 0.0001942 ***
13 ---
14 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Case studies Arrests

Effect plots: colour

plot(Effect("colour", arrests.mod), ci.style="bands", ...)
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average effect controlling
(adjusting) for all other factors
simultaneously

(The Star analysis, controlled for
these one at a time.)

=⇒ Evidence for different
treatment of blacks and whites
(“racial profiling”)

(Even Frances Nunziata could
understand this.)

NB: Effects smaller than claimed
by the Star
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Case studies Arrests

Effect plots: Interactions
The story turned out to be more nuanced than reported by the Toronto Star ,
as shown in effect plots for interactions with colour.

1 > plot(effect("colour:year", arrests.mod), multiline = TRUE, ...)

colour*year effect plot
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Case studies Arrests

Effect plots: Interactions
The story turned out to be more nuanced than reported by the Toronto Star ,
as shown in effect plots for interactions with colour.

1 > plot(effect("colour:age", arrests.mod), multiline = TRUE, ...)

colour*age effect plot
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A more surprising finding:

Opposite age effects for blacks
and whites—

Young blacks treated more
harshly than young whites

Older blacks treated less harshly
than older whites
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Case studies Arrests

Effect plots: allEffects
All model effects can be viewed together using plot(allEffects(mod))

1 > arrests.effects <- allEffects(arrests.mod, xlevels = list(age = seq(15,
2 + 45, 5)))
3 > plot(arrests.effects, ylab = "Probability(released)")
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checks effect plot
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Model diagnostics

Model diagnostics

As in regression and ANOVA, the validity of a logistic regression model is
threatened when:

Important predictors have been omitted from the model
Predictors assumed to be linear have non-linear effects on Pr(Y = 1)
Important interactions have been omitted
A few “wild” observations have a large impact on the fitted model or
coefficients

Model specification: Tools and techniques

Use non-parametric smoothed curves to detect non-linearity
Consider using polynomial terms (X 2,X 3, . . . ) or regression splines (e.g.,
ns(X, 3))
Use update(model, ...) to test for interactions— formula: . ∼ .2
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Model diagnostics

Diagnostic plots in R

In R, plotting a glm object gives the “regression quartet” — basic diagnostic
plots
arth.mod1 <- glm(Better ˜ Age + Sex + Treatment, data=Arthritis,

family='binomial')
plot(arth.mod1)
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Better versions of these plots are available in the car package
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Model diagnostics Leverage and influence

Unusual data: Leverage and Influence

“Unusual” observations can have dramatic effects on estimates in linear
models

Can change the coefficients for the predictors
Can change the predicted values for all observations

Three archetypal cases:
Typical X (low leverage), bad fit — Not much harm
Unusual X (high leverage), good fit — Not much harm
Unusual X (high leverage), bad fit — BAD, BAD, BAD

Influential observations: unusual in both X and Y
Heuristic formula:

Influence = LeverageX × ResidualY
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Model diagnostics Leverage and influence

Effect of adding one more point in simple linear regression (new point in blue)
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Model diagnostics Leverage and influence

Influence plots in R
library(car)
influencePlot(arth.logistic2)
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X axis: Leverage (“hat
values”)
Y axis: Studentized
residuals
Bubble size ∼ Cook D
(influence on coefficients)

59 / 60

Model diagnostics Leverage and influence

Which cases are influential?
ID Treatment Sex Age Better StudRes Hat CookD

1 57 Treated Male 27 1 1.922 0.08968 0.3358
15 66 Treated Female 23 0 -1.183 0.14158 0.2049
39 11 Treated Female 69 0 -2.171 0.03144 0.2626
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