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Model-based methods: Overview

@ Explicitly assume some probability distribution for the data, e.g., binomial,
Poisson, ...

@ Distinguish between the systematic component— explained by the
model— and a random component, which is not

@ Allow a compact summary of the data in terms of a (hopefully) small
number of parameters

Advantages

@ Inferences: hypothesis tests and confidence intervals

@ Methods for model selection: adjust balance between goodness-of-fit and
parsimony

@ Predicted values give model-smoothed summaries for plotting

@ — Interpret the fitted model graphically

Overview Fitting and graphing

Fitting and graphing: Overview

Object-oriented approach in R:

- glm()
'nEUt polr() » model
multinom() object

@ Fit model (obj <- glm(...)) — a model object

@ print (obj) and summary (obj) — numerical results

@ anova (obj) and Anova (obj) — tests for model terms

@ update (obj), addl (obj), dropl (ob7j) for model selection

Plot methods:
@ plot (obj) often gives diagnostic plots
@ Other plot methods:
@ Mosaic plots: mosaic (obj) for "loglm" and "glm" objects
o Effect plots: plot (Effect (obj)) for nearly all linear models
o Influence plots (car): influencePlot (obj) for "glm" objects

Overview Objects and methods

Objects and methods

How this works:
@ Model objects have a "class” attribute:
@ loglm(): "loglm"
@ glm():c("glm", "1lm") — inherits also from 1m()
@ Class-specific methods have names like method.class, e.g.,
plot.glm(), mosaic.loglm()
@ Generic functions (print (), summary (), plot () ...) call the
appropriate method for the class

arth.mod <- glm(Better ~ data=Arthritis)

class (arth.mod)

Age + Sex + Treatment,

## [l] "glm" "lm"
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Objects and methods Objects and methods
Methods for "g1m" objects Some available plot () methods:

library (MASS); library (vcdExtra) methods ("plot")

methods (class="glm")

## [1] plot.acfx* plot .ACF«
## [1] addl.glmx addterm.glmx* ## [3] plot.augPredx plot.coef.merx*
## [3] anova.glmx Anova.glmx* ## [5] plot.compareFitsx plot.correspondencex
## [5] asGnm.glm=* assoc.glm ## [7] plot.data.framex plot.decomposed.tsx*
## [7] avPlot.glmx Boot.glmx ## [9] plot.default plot.dendrogramx
## [9] bootCase.glmx ceresPlot.glmx ## [11] plot.densityx plot.ecdf
## [11] coeftest.glmx confidenceEllipse.glmx* ## [13] plot.effx plot.efflistx*
## [13] confint.glmx cooks.distance.glmx ## [15] plot.effpolyx* plot.factorx
## [15] deviance.glmx dropl.glm* ## [17] plot.formulax plot.function
## [17] dropterm.glm=* effects.glmx ## [19] plot.gamx plot.ggplot«*
## [19] extractAIC.glmx family.glmx* ## [21] plot.glsx plot.gnmx
## [21] formula.glmx gamma . shape.glmx* ## [23] plot.goodfitx plot.gtablex
## [23] influence.glmx leveragePlot.glmx ## [25] plot.hclustx plot.histogramx
## [25] linearHypothesis.glmx logLik.glmx ## [27] plot.HLtestx plot.HoltWintersx*
## [27] mmp.glmx model. frame.glmx ## [29] plot.intervals.lmList* plot.isoregx
## [29] modFit.glm mosaic.glm ## [31] plot.jamx plot.ldax
## [31] ncvTest.glm= nobs.glmx ## [33] plot.lmx plot.lmex
## [33] predict.glm print.glm=* ## [35] plot.lmListx plot.lmList.confintx*
## [35] profile.glm« qgPlot .glmx ## [37] plot.loddsratiox plot.loglm*
## [37] residualPlot.glm= residualPlots.glmx* ## [39] plot.mcax plot.medpolish=
## [39] residuals.glm rstandard.glmx* ## [41] plot.merModx plot.mlmx
## [41] rstudent.glmx* sieve.glm ## [43] plot.mlm.efflistx plot.nffGroupedDatax
## [43] sigmaHat.glmx* summarise.glmx ## [45] plot.nfnGroupedDatax plot.nlsx
## [45] summary.glm vcov.glmx 5/60 ## [47] plot.nmGroupedDatax plot.oddsratio=* 6/60
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Modeling approaches: Overview Logistic regression models

[’ Association models ] [‘ Response models ]

* Loglinear models * Binary response Response variable

(Contingency table form) e Qategorical predictors: Logit models @ Binary response: success/failure, vote: yes/no

EWHW] ] ol ; N 1Dept @ Binomial data: x successes in n trials (grouped data)

[AdmitDeptlIAdmitGender]iGenderDept] logit(Admit) ~ Dept + Gender @ Ordinal response: none < some < severe depression
@ Polytomous response: vote Liberal, Tory, NDP, Green

* Continuous/mixed predictors:
* Poisson GLMs Logistic regression models

Explanatory variables

@ Quantitative regressors: age, dose

@ Transformed regressors: ,/age, log(dose)

@ Polynomial regressors: age?, age®, - - - (or better: splines)

@ Categorical predictors: treatment, sex (dummy variables, contrasts)
@ Interaction regessors: treatment x age, sex x age

Pr(Admit) ~ Dept + Age + GRE

* Polytomous response
* Ordinal: proportional odds model
Improve ~ Age + Sex + Treatment
¢ General: multinomial model

WomenWork ~ Kids + Husbandlng

(Frequency data frame)

Freq ~ Admit + Gender*Dept

Freq ~ Admit*Dept + Gender*Dept

Freq ~ Admit*Dept + Admit*Gender +
Gender*Dept

* Ordered variables
Freq ~ right+left+Diag(right.left)

This is exactly the same as in classical ANOVA, regression models
Freq ~ right+left+Symmright left) y g




Arthritis treatment data

@ The response variable, ITmproved
is ordinal: "None" < "Some" <
"Marked"

@ A binary logistic model can
consider just Better =
(Improved>"None")

@ Other important predictors: Sex,
Treatment

@ Main Q: how does treatment affect
outcome?

@ How does this vary with Age and
Sex?

@ This plot shows the binary
observations, with several
model-based smoothings

0.254
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Berkeley admissions data

Model: logit(Admit) = Dept Gender

@ Admit/Reject can be considered a

2 ™ binomial response for each Dept

° and Gender

@ Logistic regression here is
analogous to an ANOVA model,
but for log odds(Admit)

@ (With categorical predictors, these
are often called logit models)

@ Every such model has an
equivalent loglinear model form.

@ This plot shows fitted logits for the
main effects model, Dept +
Gender

|50

125

Log Odds (Admitted)
)
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Department
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Survival in the Donner Party
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@ Binary response: survived D D |

@ Categorical predictors: sex, | . =
family

@ Quantitative predictor: age

@ Q: Is the effect of age linear?

@ Q: Are there interactions among
predictors?

@ This is a generalized pairs plot,
with different plots for each pair

"6

K3
@
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Binary response: What’s wrong with OLS?

@ For a binary response, Y € (0, 1),
want to predict m = Pr(Y = 1] x)
@ A linear probability model uses
classical linear regression (OLS)
@ Problems: i
o Gives predicted values and Cls g
outside 0 < 7 < 1
@ Homogeneity of variance is
violated: V(7)) = (1 — #t) #
constant
@ Inferences, hypothesis tests are
wrong!
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Binary response

OLS vs. Logistic regression

OLS regression:
« Assume y[x ~ N(0, 62)

Logistic regression:
« Assume Pr(y=1|x) ~ binomial(p)

F“‘

HERCEIRS o

Fig. 2.1. Graphical representation of a simple linear normal regression. Fig. 2.2. Graphical representation of a simple linear logistic regression.
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Logistic regression

@ Logistic regression avoids these
problems

@ Models logit(7;) = log[r/(1 — 7)]

@ logit is interpretable as “log odds”
that Y =1

@ A related probit model gives very
similar results, but is less
interpretable

@ For 0.2 < 7 < 0.8 fitted values are
close to those from linear
regression.
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Binary response Logistic regression model

Logistic regression: One predictor

For a single quantitative predictor, x, the simple linear logistic regression
model posits a linear relation between the log odds (or logit) of Pr(Y = 1)

and x,
()

logit[7(x)] = log <1—7r(x)> =a+6x .
@ When 8 > 0, n(x) and the log odds increase as x increases; when § <
they decrease with x.
@ This model can also be expressed as a model for the probabilities 7(x)

1

m(x) = logit™'[(x)] = 1+ exp[—(a + Ax)]

0
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Logistic regression: One predictor

The coefficients of this model have simple interpretations in terms of odds and
log odds:

@ The odds can be expressed as a multiplicative model

7(X)

odds(Y =1) = =)

= exp(a + fx) = e*(e’)* . (1)
Thus:

@ [ is the change in the log odds associated with a unit increase in x.

@ The odds are multiplied by e® for each unit increase in x.

@ «islog odds at x = 0; e“ is the odds of a favorable response at this
x-value.

@ In R, use exp (coef (ob7) ) to get these values.

@ Another interpretation: In terms of probability, the slope of the logistic
regression curve is Sr(1 — )

@ This has the maximum value 3/4 at = = }
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Binary response Logistic regression model Binary response Fitting

Logistic regression models: Multiple predictors

@ For a binary response, Y € (0, 1), let x be a vector of p regressors, and
w; be the probability, Pr(Y = 1| x).

@ The logistic regression model is a linear model for the log odds, or logit
that Y = 1, given the values in x,

Iogit(7r,')5|09< i ) -

1—m;

a+x' B
= a+ B1Xq + BeXig + -+ BpXp

@ An equivalent (non-linear) form of the model may be specified for the
probability, 7;, itself,

—1
i = {1+ exp(~[a+ x| B])}
@ The logistic model is also a multiplicative model for the odds of “success,”

= expla+ x| B) = exp(0) exp(x] )

Increasing x; by 1 increases logit(r;) by 3;, and multiplies the odds by e”.
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Fitting the logistic regression model

Logistic regression models are the special case of generalized linear models,
fitin Rusing glm (..., family=binomial)
For this example, we define Better as any improvement at all:

data ("Arthritis", package="vcd")
ArthritisS$Better <— as.numeric (Arthritis$Improved > "None")

Fit and print:

arth.logistic <— glm(Better ~
arth.logistic

Age, data=Arthritis, family=binomial)

##

## Call: glm(formula = Better ~ Age, family = binomial, data = Arthritis)
#4

## Coefficients:

## (Intercept) Age

## -2.6421 0.0492

##

## Degrees of Freedom: 82 Residual
## Null Deviance:

## Residual Deviance:

83 Total (i.e.
116
109

Null);

AIC: 113
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The summary () method gives details:

summary (arth.logistic)

#4

## Call:

## glm(formula = Better ~ Age, family = binomial, data = Arthritis)
#4

## Deviance Residuals:

#H# Min 10 Median 30 Max

## -1.5106 -1.1277 0.0794 1.0677 1.7611

#4

## Coefficients:

#4# Estimate Std. Error z value Pr(>|z])

## (Intercept) -2.6421 1.0732 -2.46 0.014 =«

## Age 0.0492 0.0194 2.54 0.011 =

## ———

## Signif. codes: 0 's*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 "' ' 1
#4

## (Dispersion parameter for binomial family taken to be 1)

## Null deviance: 116.45 on 83 degrees of freedom
## Residual deviance: 109.16 on 82 degrees of freedom
## AIC: 113.2

#4#

## Number of Fisher Scoring iterations: 4

Interpreting coefficients

coef (arth.logistic) exp (coef (arth.logistic))

## (Intercept)
#4 -2.642071

Age ##
0.049249 ##

(Intercept)
0.071214

Age
1.050482

exp (10xcoef (arth.logistic) [2])

## Age
## 1.6364

Interpretations:

@ log odds(Better) increase by 5 = 0.0492 for each year of age

@ odds(Better) multiplied by e’ = 1.05 for each year of age— a 5%
increase

@ over 10 years, odds(Better) are multiplied by exp(10 x 0.0492) = 1.64, a
64% increase.

@ Pr(Better) increases by 3/4 = 0.0123 for each year (near = = %)
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Binary response Multiple predictors Binary response Multiple predictors

Multiple predictors Multiple predictors: Fitting
Fit the main effects model. Use I (rge-50) to center Age, making «
The main interest here is the effect of Treatment. Sex and Age are control interpretable.

variables. Fit the main effects model (no interactions): arth.logistic2 <- glm(Better - I(Age-50) + Sex + Treatment,

data=Arthritis, family=binomial)
logit(7;) = o + B1Xi1 + BaXiz + BaXi _ o o _
coeftest () in Imtest gives just the tests of coefficients provided by
where x; is Age and X, and X3 are the factors representing sex and summary () :

Treatment, respectively. R uses dummy (0/1) variables for factors. library (Imtest)

coeftest (arth.logistic?2)

o — 0 if Female o — 0 if Placebo
271 1 if Male 371 1 if Treatment i o
## z test of coefficients:
#H
g ; ; ; ) ## Estimate Std. Error z value Pr(>|z|)
o« dgesnt havg a sensible interpretation here. Why? 4+ (Intercept) S0t 0 3694 0TE5 0116
@ (1: increment in log odds(Better) for each year of age. ## I(Age - 50) 0.0487 0.0207 2.36 0.018 =
@ [,: difference in log odds for male as compared to female. ## SexMale =1.437E 0.5948  -2.50 0,012 «
T . ## TreatmentTreated 1.7598 0.5365 3.28 0.001 =%
@ [(3: difference in log odds for treated vs. the placebo group i
## Signif. codes: 0 'sxx' 0.001 'xx' 0.01 'x' 0.05 '.'" 0.1 "' ' 1
21/60 22/60
Interpreting coefficients Hypothesis testing: Questions
b ((Ze i eoel (aurth . Lleglat Ae) | @ Overall test: How does my model, logit(7) = o« + x"3 compare with the
OddsRatio=exp (coef (arth.logistic2)), exp (confint (arth.logistic2))) null model, |og|t(77) = a?
#4# coef OddsRatio 2.5 % 97.5 % . _ _ _ _
## (Intercept) -0.5781 0.561 0.2647 1.132 Ho - B —52—"'—5p—0
## I(hAge - 50) 0.0487 1.050 1.0100 1.096 ] o _ '
## SexMale -1.4878 0.226 0.0652 0.689 @ One predictor: Does x, significantly improve my model? Can it be
## TreatmentTreated 1.7598 5.811 2.1187 17.727 dropped'?

Ho : Bx = 0 given other predictors retained
@ o = —0.578: At age 50, females given placebo have odds(Better) of

e-0578 _ 0 56. @ Lack of fit: How does my model compare with a perfect model (saturated
@ 3y = 0.0487: Each year of age multiplies odds(Better) by %0487 = 1.05, model)?

a 5% increase. For ANOVA, regression, these tests are carried out using F-tests and t-tests.
@ (2 = —1.49: Males e %9 = 0.26 x less likely to show improvement as In logistic regression (fit by maximum likelihood) we use

females. (Or, females e'49 = 4.437 x more likely than males.) o F-tests s likelihood ratio G tests
® 33 = 1.76: Treated e'-75=5.81 x more likely Better than Placebo o t-tests — Wald z or 2 tests

23/60 24/60




Maximum likelihood estimation

@ Likelihood, £ = Pr(data| model), as function of model parameters
@ For case J,
p, ifY=1

1_{1'0[ TRV p; =1/ (1+exp(x,B8))

=p"(1-p")  where

@ Under independence, joint likelihood is the product over all cases
n
c=1[r"(1-p"
i

@ — Find estimates 5 that maximize log L. lterative, but this solves the
“estimating equations”
X'y =X'p
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Overall test

= Likelihood ratio test (G2)

» Compare nested models, similar to incremental F
tests in OLS

= Let £, = maximized likelihood for our model
logit(7,)= 3, + X/ B

* Let £, = maximized likelihood for null model
logit(7,) = 3, Hy: B =p=-=p=0

» | ikelihood-ratio test statistic:

w/ k predictors

under

G* = —2|og{i—°] =2(logL, —logLy) ~ x{

1

26/60

Wald tests and confidence intervals

® Analogous to t-tests in OLS
" Hy:B=0
bk 2

= " A(0,1)

- 2
A

(Wald chi-square)

or

® Confidence interval:

bk T Z‘I—OtIZS(bk)

Analysis of Maximum Likelihood Estimates
Standard Wald
€g., Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 |-4.5033 1.3074 11.8649 0.0006
sex Female 1 1.4878 0.5948 6.2576 0.0124
treat Treated 1 1.7598 0.5365 10,7596 0.0010
age i 0.0487 0.0207 5.5655 0.0183
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LR, Wald and score tests

Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > Chisg
Likelihood Ratio 24.3859 3 <.0001
Score 22.0051 3 <.0001
Wald 17.5147 3 0.0006
R =0 .
g biingos R st B R | Different ways to measure
= F P B\ departure fromH,: B =0
[ // N - Eore Test P 0- ﬁ -
....................... A T -, P
/’ TN * LR test: diff in log L
/ N A 2
/ : ‘\\:\ «Wald test: (B—B,)
/ ! \
/ : \ « Score test: slope at =0
! N\
/ i
/ -~ i \\\
// wald Test” | \\
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Visualizing Visualizing

Plotting logistic regression data Types of plots
@ Conditional plots: Stratified plot of Y or logit(Y) vs. one X, conditioned by
Plotting a binary response together with a fitted logistic model can be difficult other predictors— only that subset is plotted for each
because the 0/1 response leads to much overplottting. @ Full-model plots: plots of fitted response surface, showing all effects;
usually shown in separate panels
@ Need to jitter the points @ Effect plots: plots of predicted effects for terms in the model, averaged
@ Useful to show the fitted logistic =1 T T ettt over predictors not involved in a given term.
curve

@ Confidence band gives a sense of

Uncerta'nty ;?: g | co ] Female Male oo Female
@ Adding a non-parametric (loess) ‘ ’
smooth shows possible £ 34 o7 —ors
nonlinearity > e B
@ NB: Can plot either on the S £ 50 \ Pacso - Zoso
response scale (probability) or the . N
link scale (logit) where effects are =1+ "% @ rweet Ait 0251 o2
li near 20 30 40 50 60 70 80
Age 0.00 3 0.00
25 50 75 Age 25 50 75 30 40 50 60
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Conditional plots with g glplot2 Conditional plots with ggplot2
Plot of Arthritis treatment data, by Treatment (ignoring Sex)

library (ggplot2) Conditional plot, faceted by Sex

gg <- ggplot (Arthritis, aes(Age, Better, color=Treatment)) +

x1lim(5, 95) + theme_bw() + gg + facet_wrap(~ Sex)
geom_point (position = position_jitter (height = 0.02, width = 0)) +
stat_smooth (method = "glm", family = binomial, alpha = 0.2,
aes (fill=Treatment), size=2.5, fullrange=TRUE) Female Il Male
gg # show the plot 1.00 R .
0.75 4
1.00 e A
. Treatment
% 0.50 Placebo
0.75 o == Treated
. Treatment 0.25 -
% 0.50 Placebo
o == Treated
0.00
0259 25 50 75 25 50 75
Age
000+ e et The data is too thin for males to estimate each regression separately
2 50 75
Age

31/60 32/60




Plotting with ggplot2 package

Full-model plots

Full-model plots show the fitted values on the logit scale or on the response
scale (probability), usually with confidence bands. This often requires a bit of
custom programming.

Steps:

arth.fit2Sobs <- c (-4,

4

) [l+arth.fit2S$Better]

@ Obtain fitted values with predict (model,

se.fit=TRUE)—

type="1link" (logit) is the default
@ Canuse type="response" for probability scale
@ Join this to your data (cbind ())
@ Plot as you like: plot (), ggplot (), ---

gg2 <- ggplot ( arth.fit2,
geom_line(size = 2) +

geom_ribbon (aes (ymin =

ymax =

£ill =

aes (x=Age, y=fit, color=Treatment))
fit - 1.96 * se.fit,

fit + 1.96 * se.fit,

Treatment), alpha = 0.2,

color = "transparent") +

labs (x = "Age", y = "Log odds

(Better)") +

L

arth.fit2 <= cbind(Arthritis,

predict (arth.logistic2,

se.fit = TRUE))

geom_point (aes (y=obs),

position=position_jitter (height=0.25, width=0))

head(arth.fit2[,-91, 4)

#4 ID Treatment Sex Age Improved Better fit se.fit
## 1 57 Treated Male 27 Some 1 -1.43 0.758
## 2 46 Treated Male 29 None 0 -1.33 0.728
## 3 77 Treated Male 30 None 0 -1.28 0.713
## 4 17 Treated Male 32 Marked 1 -1.18 0.684
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gg2 + facet_wrap(~ Sex)
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Visualizing Full-model plots

Full-model plots

Ploting on the logit scale shows the additive effects of age, treatment and sex

Female \ \ Male

N
o
1

Treatment
Placebo

= Treated

Log odds (Better)
o
o
1

—254

30 40 50 60 70 30 40 50 60 70
Age

These plots show the data (jittered) as well as model uncertainty (confidence
bands)
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Visualizing Full-model plots

Full-model plots

Ploting on the probability scale may be simpler to interpret

Female \ \ Male \

1.00 S . 5 P

0.75

Treatment

0.50 Placebo

w Treated

Probability (Better)

o

N

a
1

0.004 = ¢ . s . ° .~ £

i | i i | i | i i |
30 40 50 60 70 30 40 50 60 70
Age

These plots show the data (jittered) as well as model uncertainty (confidence
bands)
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Visualizing Full-model plots

Models with interactions

Allow an interaction of Age x Sex

arth.logistic4 <- update(arth.logistic2,
Anova (arth.logistic4)

. + Age:Sex)

## Analysis of Deviance Table (Type II tests)

#4#

## Response: Better

#H# LR Chisg Df Pr (>Chisq)

## I (Age - 50) 0

## Sex 6.98 1 0.00823 **

## Treatment 11.90 1 0.00056 x*x*

## Sex:Age 3.42 1 0.06430

## ———

## Signif. codes: 0 'sx%' 0.001 'xx' 0.01 'x' 0.05 '." 0.1 " ' 1

Interaction is NS, but we can plot it the model anyway
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Models with interactions

Visualizing Full-model plots

Female ‘ Male

Treatment

Placebo
w= Treated

Log odds (Better)

!

I

o
L

-5.04

Age

@ Only the model changes

@ predict () automatically incorporates the revised model terms
@ Plotting steps remain the same

@ This interpretation is quite different!
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Visualizing visreg package

The visreg package

@ Provides a more convenient way to plot model results from the model
object

@ A consistent interface for linear models, generalized linear models, robust
regression, etc.

@ Shows the data as partial residuals or rug plots

@ Can plot on the response or logit scale

@ Can produce plots with separate panels for conditioning variables
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library (visreq)
visreg(arth.logistic2, ylab="logit (Better)", ...)

Visualizing visreg package

logit(Better)
logit(Better)
logit(Better)

Age Sex Treatment

@ One plot for each variable in the model

@ Other variables: continuous— held fixed at median; factors— held fixed
at most frequent value R

@ Partial residuals (r;): the coefficient 3; in the full model is the slope of the
simple fit of r; on x;.
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Effect plots General ideas Effect plots General ideas

Effect plots: basic ideas
Show a given effect (and low-order relatives) controlling for other model

Effect plots for generalized linear models: Details

effects. @ For simple models, full model plots show the complete relation between
Data response and all predictors.
e et “Fitdata: XB= 7§ @ Fox(1987)— For complex models, often wish to plot a specific main effect
i N i or interaction (including lower-order relatives)— controlling for other
2 2 1w 0 6.10 5.55 i effects
3 301 F =l 4.32 4.34 eScore data X*B= “y* . . . \ . .
a | 11 ¢ 1 1.8 4.46 o Fit full model to data with linear predictor (e.g., logit) n = X3 and link
" . e * plot yars: vary over range function g(p) = n — estimate b of 8 and covariance matrix V(b) of b.
o0 (IR I - 6.10 6.15 * control vars: fix at means o Construct “score data”
30 3: 2 j o € 6.71 7.14 . . .
@ Vary each predictor in the term over its’ range
) @ Fix other predictors at “typical” values (mean, median, proportion in the data)
Score data e e o — “effect model matrix,” X*
®1 %2 [sex xl:x2 v vhat* = o Use predict () on X*
31 1 1f 0.5 1 NA 5.030 ? [ — . A -
22 | 2 1l os ) a P, @ Calculate fitted effect values, #* = X*b. -
33 | 3 1|05 3 "ia 1.912 plot . @ Standard errors are square roots of diag X* V(b)X*T
34 | 1 2[0.5 2 NA 3.437 s IR
a Wl e e i b : e Plot /1", or values transformed back to scale of response, g~ ' (%").
36 3 2| 0.5 6 NA 7710 . . . . . . . .
feed : @ Note: This provides a general means to visualize interactions in all linear
O and generalized linear models.
plotvars  control vars "
41/60 42/60

Plotting main effects:

library (effects)

arth.eff2 <- allEffects(arth.logistic?2)

plot (arth.eff2,

Age effect plot

0.8 4
0.7 H
0.6 +
05 +
0.4 +
0.3 +
0.2 4

Better

0.1 -
30 35 40 45 50 55 60 65 70
Age

rows=1,

Better

cols=3)
Sex effect plot Treatment effect plot
1 1 1
0.7 4 N 0.8
0.6 + 07 4
0.5 - - =
o4 i B 06
- T 05
0.3 r D 04
0.2 - - 0.3 -
0.2
T T
Female Male Placebo
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T
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Full model plots:

arth.full <- Effect(c("Age", "Treatment", "Sex"), arth.logistic2)
plot (arth.full, multiline=TRUE, ci.style="bands", colors = c("red'
"blue"), 1lwd=3, ...)
Age*Treatment*Sex effect plot
30 35 40 45 50 55 60 65 70
1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1
Sex : Female Sex : Male
0.95 4 Treatment ‘
0.90 - _ -| LPlacebo Treated = =
- -
0’54 _ === r
- =T - .
5 050 == - +
& o025 -=--" -
0.10 -________———--—————-——--—-———————_-—"' L
0.05 - -
LIt 1 LA vy e nnnyinru 1 | - [N INTNN] L
T T T T T T T T T T T T T T T
30 35 40 45 50 55 60 65 70
Age
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Effect plots Examples Case studies Arrests

Model with interaction of Age x Sex Case study: Arrests for Marijuana Possession

Context & background
plot (allEffects (arth.logistic4), rows=1, cols=3)

Age effect plot Treatment effect plot Sex*Age effect plot
303540455055606570
B L Sex : Female Sex : Male . . . e
o °% i @ In Dec. 2002, the Toronto Star examined the issue of racial profiling, by
i 7 i | analyzing a data base of 600,000+ arrest records from 1996-2002.
. 06 F . 06 - . . .
g os L% os] L 5 os] L @ They focused on a subset of arrests for which police action was
04 1 g 04+ LR " discretionary, e.g., simple possession of small quantities of marijuana,
03 1 - 031 - 02 1 - where the police could:
Oziw‘lm N TR 2] ‘ ‘ § [TERETR T e e o Release the arrestee with a summons— like a parking ticket
30 35 40 45 50 55 60 65 70 Placebo Treated 3035404550556065 70 o Bring to p0|ice Station, ho|d for ba”, etc.— harsher treatment
Age Treatment Age .
@ Response variable: released — Yes, No
@ Only the f:jlgh'OVdef terms for Treatment and Sex*Age need to be @ Main predictor of interest: skin-colour of arrestee (black, white)
interprete

@ (How would you describe this?)
@ The main effect of Age looks very different, averaged over Treatment and
Sex
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Case studies Arrests

The Toronto Star meets mosaic displays...

B SECTION YIEUTIERYRS WEDNESDAY, DECEMBER 11, 2002 % thestar.com Wh|ch got turned |nto th|S |nfog raph|c

Race and Crime

Same charge, different treatment

Statistical analysis of single drug possession charges shows Degree of likelihood
that blacks are much less likely to be released at the scene ! Much less likely to occur
and much more likely to be held in custody for a bail hearing.
Darker colours represent a stronger statistical link between . Much more likely to occur
skin colour and police treatment. D More likely to oceur
Whites are more likely to be released at the scene
6662 [ 78% 14.5% [AR0
Caqarges released at the scene released IR}
at station fOﬁ
bail
Blacks are much more likely to be held for bail hearings
sl 64% 20% 16% held
HEkaal released at the scene released at station Tl ET]}
| | I I | I
0% 10 20 30 40 50 50 70 80 90 100

VINCE TALOTTA/TORONTO STAR SOLIRCE: Toronto police arrest records 1996-2002

Toronto Star's seri

Man behind the numbers .. Hey, they even spelled likelihood correctly!
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Case studies Arrests Case studies Arrests

Arrests for Marijuana Possession: Data
Data
Control variables:
@ year, age, sex
@ employed, citizen —Yes, No
@ checks — Number of police data bases (previous arrests, previous
convictions, parole status, etc.) in which the arrestee’s name was found.

# for Arrests data
# for Anova ()

library (effects)
library (car)
data (Arrests)
some (Arrests)

#4 released colour year age sex employed citizen checks
## 299 Yes Black 2001 24 Male Yes Yes 3
## 766 Yes White 2000 18 Male Yes Yes 2
## 1530 Yes White 2000 14 Male Yes Yes 0
## 2367 Yes White 1999 23 Male Yes Yes 0
## 2619 No White 2001 22 Male Yes Yes 2
## 2664 No Black 1998 38 Male Yes No 3
#4# 4202 No White 2001 47 Female No Yes 1
## 4206 Yes Black 1999 26 Male No Yes 0
#4# 4323 Yes Black 1999 22 Male No Yes 6
## 5102 Yes White 2000 19 Male Yes Yes 0
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Arrests for Marijuana Possession: Model

To allow possibly non-linear effects of year, we treat it as a factor:
> Arrests$year <- as.factor (Arrests$year)

Logistic regression model with all main effects, plus interactions of
colour:year and colour:age

> arrests.mod <- glm(released ~ employed + citizen + checks + colour =

+ year + colour * age, family = binomial, data = Arrests)
> Anova (arrests.mod)
Analysis of Deviance Table (Type II tests)
Response: released
LR Chisg Df Pr (>Chisq)
employed 72.673 1 < 2.2e-16 *x*x%
citizen 25.783 1 3.820e-07 *x*x*
checks 205.211 1 < 2.2e-16 *x%*
colour 19.572 1 9.687e-06 *xx
year 6.087 5 0.2978477
age 0.459 1 0.4982736
colour:year 21.720 5 0.0005917 *#**
colour:age 13.886 1 0.0001942 x%xx
Signif. codes: 0 "x%%' 0.001 '"4%' 0.01 '«' 0.05 '.'" 0.1 " " 1
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Effect plots: colour

plot (Effect ("colour", arrests.mod), ci.style="bands", ...)

0.88 - I

@ Effect plot for colour shows
average effect controlling
(adjusting) for all other factors
simultaneously

@ (The Star analysis, controlled for
these one at a time.)

0.84 I

@ — Evidence for different
treatment of blacks and whites
(“racial profiling”)

Probability(released)

0.82 I

@ (Even Frances Nunziata could
understand this.)

N | @ NB: Effects smaller than claimed
by the Star

T
Black White

Skin color of arrestee
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Case studies Arrests

Case studies Arrests

Effect plots: Interactions
The story turned out to be more nuanced than reported by the Toronto Star,
as shown in effect plots for interactions with colour.

> plot (effect ("colour:year",

arrests.mod), multiline

TRUE, ...)

colour*year effect plot

0.88 | , N , \ -

0.86 — A \\ =
' @ Up to 2000, strong evidence for
differential treatment of blacks
and whites

0.84
082 @ Also evidence to support Police
Al claim of effect of training to
reduce racial effects in treatment

Probability(released)

0.8 +

0.78 -

colour
Black °
White - -- A

0.76 -

T T T T T
1997 1998 1999 2000 2001 2002

year
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Case studies Arrests Case studies Arrests

Effect plots: Interactions Effect plots: allEffects
The story turned out to be more nuanced than reported by the Toronto Star,

. . : . All | eff i h i 1 11Eff
as shown in effect plots for interactions with colour. model effects can be viewed together using plot (a ects (mod))

o > arrests.effects <- allEffects (arrests.mod, xlevels = list (age = seq(l5,
> plot (effect ("colour:age", arrests.mod), multiline = TRUE, ...) + 45, 5)))
colourtage effect plot > plot (arrests.effects, ylab = "Probability(released)")
1 1 1 ‘ 1 employed effect plot citizen effect plot checks effect plot
colour
Elack — White = =
0.95 - 8 g 0887 r g E L
.. . . g 0.84 4 = g g |
A more surprising finding: gomq r 2 [ £
S 08 .- I3 3 L
~— . 2 0.78 - - o | o L
2 @ Opposite age effects for blacks g o] g - |
0 . 74
8 and whites— No Yes Ko ves
% 0.90 employed citizen
% ° Young bIaCkS treated more colour*year effect plot colour*age effect plot
g harShly than yOUng Whltes 199199899200@002002 15 20 25 30 35 40 45
o — ‘ ct‘>lot.‘|rzl‘3lat‘:k T célou‘r:\‘l\lhi‘te ‘ = ‘ c‘olo‘ur‘: B‘Iac‘k T C‘0|0‘LII“!V\‘/hII‘E ‘
0ss L @ Older blacks treated less harshly 3 0ol T L §
than older whites $ £ ™ I
g L g 0.85 4 I
0.80 % L § 084"~ L
S o7 o S 075 e L
o T T T T T T [N
‘llllll‘llII*IIIIFIIIIFIIII‘IIIIII‘\II\III\I‘\ \HHH‘H 1997199899200@002002 15 20 25 30 35 40 45
20 25 30 35 40 45 50 55 60 year age
Age
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Model diagnostics Diagnostic plots in R

In R, plotting a g1m object gives the “regression quartet” — basic diagnostic
As in regression and ANOVA, the validity of a logistic regression model is plots

threatened when: arth.modl <- glm(Better =~ Age + Sex + Treatment, data=Arthritis|,
@ Important predictors have been omitted from the model family='binomial')
plot (arth.modl)
@ Predictors assumed to be linear have non-linear effects on Pr(Y = 1)
o Important interactions have been omitted Residuals vs Fitted Normal Q-Q . _ Scale-Location Residuals vs Leverage
@ A few “wild” observations have a large impact on the fitted model or 1 = “ ¢ ® e o s
. \ °
coefficients - %, . /f - . ] b R
Model specification: Tools and techniques £ e / £ . /\ 8 Z?;” .
) ) ) & Sy, g . £ 7 o °
@ Use non-parametric smoothed curves to detect non-linearity 7 S, 3o f 5 3 E %,
@ Consider using polynomial terms (X2, X3, ...) or regression splines (e.g., N %o $ e
ns (XI 3) ) ‘ e a 703223 g . T 0Cook's distance 05
@ Use update (model, ...) to test for interactions— formula: . ~ .2 2 -1 0 1 2 2 10 1 2 2 -1 0 1 2 000 004 008 012

Better versions of these plots are available in the car package
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Model diagnostics Leverage and influence Model diagnostics Leverage and influence

Unusual data: Leverage and Influence Effect of adding one more point in simple linear regression (new point in blue)

y Yy
70j Original data 70: Low leverage, Ou.uie_[‘
601 : 601 qf
@ “Unusual” observations can have dramatic effects on estimates in linear sl y 5ol
models | o |
e Can change the coefficients for the predictors 401 oo 407
e Can change the predicted values for all observations =  a 20!
@ Three archetypal cases:
o Typical X (low leverage), bad fit — Not much harm o 20 30 40 s s 70 e 0 20 2 40 s e 70 8
@ Unusual X (high leverage), good fit — Not much harm X *
@ Unusual X (high leverage), bad fit — BAD, BAD, BAD 7
@ Influential observations: unusual in both X and Y ool
@ Heuristic formula:
501
Influence = Leveragex x Residualy a0l
307
20+
X X
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Influence plots in R Which cases are influential?
library (car)
influencePlot (arth.logistic2) ID Treatment Sex Age Better StudRes Hat CookD
1 57 Treated Male 27 1  1.922 0.08968 0.3358
P - e S oo ————————— = 15 66 Treated Female 23 0 -1.183 0.14158 0.2049
OO0 @) | 39 11  Treated Female 69 0 -2.171 0.03144 0.2626
® 0. o | | TTTOOTY
-] ° & o : 3 @)
. | | ® o
¢ i i . ] °me ©g
£ t ‘ ‘ @ X axis: Leverage (“hat . ° °
I N A values”) |
3 3 | @ Yaxis: Studentized L
g T § § residuals | -
& ° o . : . g 8 o
? 7 ° L ; @ Bubble size ~ Cook D e e
1% § 1€) (influence on coefficients) P00 oy (O 1€
(@) o) O
o ©o © % o @0
O : (%8} J
! 7%’”””””””””””””””7”? 7777777777777777777777777777 3” 0.04 0.06 0.08 0.10 0.12 0.14
T T T T T T Hat-Values
0.04 0.06 0.08 0.10 0.12 0.14
Hat-Values
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